

Performing seismic scenario in the Luchon-Val d'Aran area, Central Pyrenees

7th EUROGEO, Bologna, Italy, 12th-15th june 2012

Contact: Agathe Roullé (BRGM) – <u>a.roulle@brgm.fr</u>

Authors: A. Roullé (BRGM), A. Macau (IGC), S. Figueras (IGC), D. Monfort-Climent (IGC), N. Lantada (UPC), T. Susagna (IGC), J. Irizarry (IGC)

Introduction

- SISPYR project
 - M1: Improvment of the realtime seismic network of Pyrenees
 - M2: Seismic data exchange (in relation to M1)
 - M3: Improvment of seismic knowledge on Pyrenees
 - M4: Seismic risk mitigation: shakemaps and risk scenarii
 - M5: Early Warning System faisability
 - M6: Communication
- Realization of 2 seismic scenarii in the pilot zone of Val d'Aran and Luchon-Saint Béat (part of the M4 module)
 - Deterministic scenario (1923 earthquake)
 - Probabilistic scenario
- Why here ?
 - Important tourist zone within the Pyrenees. Ski resorts (Baqueira Beret, Superbagnères) and thermal (Bagnères de Luchon).
 - One of the most active zone of France and Spain in terms de seismicity
 - M 4.8 in Lège (France) in 1999
 - Vielha earthquake in 1923. Intensity VIII-VII.

Deterministic scenario scheme

Deterministic scenario: seismic hazard map

- Based on observed and interpreted intensities from 1923 earthquake
- Epicenter south of Vielha
- In Vielha downtown intensity VIII
- Intensities between VII (valleys) and V

Deterministic scenario: vulnerability index assessment

- > Identification of the main building types within the zone
- > Identification of the main vulnerability factors
- > Association to RISK-UE types (vulnerability index)

	Type	Structure	RISK-UE type	Description
ONLY	<u>T1</u>	Bearing walls in	M1.2	Traditional housing.
T5)	<u>T1'</u>	stone masonry	M1.2-M1.3	Big buildings from Bagneres de Luchon.
	<u>T2</u>	Unrenforced masonry	M3.3	Unreinforced masonry. Composite slabs.
	<u>T3</u>		M3.4	Unreinforced masonry. RC slabs.
	<u>T4</u>	RC structures	RC3.2	RC frames and masonry infill walls. Structure with irregularities.
	<u>T5</u>		RC2	RC shear walls.
	<u>T6</u>	Steel structures	S3	Steel structure with masonry infill walls 5
	<u>T7</u>	Wooden structures	W	Chalet

Deterministic scenario: buildings typology map

- Estimation based on
 - Interpretation of aerial images
 - Using census data
 - Field work
 - Interview with local constructors and architects
- Mapping of built homogeneous zones
 - Downtown
 - Disseminated areas
 - Housing state
 - Flats

Deterministic scenario: vulnerability maps

- French side: big urban development at XIX century and XX (thermal tourism in Bagneres).
 - T1 and T1' are the main types
- French side, low development during the 1970-80s
- Val d'Aran: important development in the 1970s (ski resorts).
 - high number of collective dwelling buildings (T4)

Deterministic scenario: damage calculations

Classification of damage to masonry buildings			
	Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Hair-line cracks in very few walls. Fall of small pieces of plaster only. Fall of loose stones from upper parts of buildings in very few cases.		
	Grade 2: Moderate damage (slight structural damage, moderate non-structural damage) Cracks in many walls. Fall of fairly large pieces of plaster. Partial collapse of chimneys.		
	Grade 3: Substantial to heavy damage (moderate structural damage, heavy non-structural damage) Large and extensive cracks in most walls. Roof tiles detach. Chimneys fracture at the roof line; failure of individual non-struc- tural elements (partitions, gable walls).		
	Grade 4: Very heavy damage (heavy structural damage, very heavy non-structural damage) Serious failure of walls; partial structural failure of roofs and floors.		
	Grade 5: Destruction (very heavy structural damage) Total or near total collapse.		

Deterministic scenario: results

- Physical damages to built environment
 - Partial collapse (D4) or complete collapse (D5) minor to 2%
 - Strong damage (D3) between 5 and 10% into the most important cities: Bagnères-de-Luchon and Vielha
 - Minor damage or no damage for the majority of buildings

Probabilistic scenario scheme

Probabilistic scenario: intensity map

 Intensity map derived from previous works on Pyrenees (ISARD project, 2006) (return period: 475 years)

Intensity used on the whole pilot zone: VII-VIII

Probabilistic scenario: site effects assessment

- Analysis based on:
 - Geological maps
 - Geotechnical data (very few on the French side)
 - Geophysical data
 - H/V for site effect detection and resonance frequency measurement
 - MASW for Vs profiles (shallow depths up to 30 meters)
 - Array measurements for Vs profiles (medium depths up to 100 meters)
- Field work performed by IGC and BRGM
 - France: 75 H/V, 21 MASW, 3 arrays
 - Spain: 98 H/V, 8 arrays
- First results
 - France: low frequencies site effects (down to 0.5 Hz) interpreted as very deep deposits (more than 100 m depth) in the axial Luchon valley and the Northern site of Cierp-Gaud
 - Spain: high frequencies site effects coherent with straigth valleys and thin quaternary deposits overlying bedrock

Probabilistic scenario: site effects assessment

- Several steps:
 - Mapping of homogeneous zones in terms of geology, resonance frequency and Vs profiles
 - Estimation of a standard soil column for each zone
 - Calculation of its response under a specific excitation (acceleration spectra derived from previous work on regional seismicity, Secanell et al., 2008)
 - Translation of this response into intensity increment (EMS98 scale) (from Arias Inetnsity following Cabañas et al., 1997)

Probabilistic scenario: site effects assessment (example of Vielha)

Probabilistic scenario: seismic hazard map

- Intensity increment calculated for each homogeneous site effects zones (with geophysical measurements)
- Extrapolation to zones without geophysical measurements (on base of geology)
- Intensity increment map on the whole pilot zone (EMS98 scale)
- Stronger site effects on the French side (larger valleys with deeper sediments deposits)

Probabilistic scenario: results

- Vulnerability: same as deterministic scenario
- Damage calculation method: same as deterministic scenario
- Physical damages to built environment:
 - Higher expected damages on French side
 - Heavy damages (D4 and D5) <10%
 - Spanish side has more built areas over bedrock zones → minor damages
 - Big number of buildings on D2-D3 damage state

Conclusions

- Realization of 2 scenarii for seismic risk mitigation purposes
 - A deterministic one (1923 earthquake)
 - A probabilistic one (return period of 475 years)
 - Including:
 - Regional seismicity (regional seismic hazard)
 - Site effects (local seismic hazard)
 - Building stock vulnerability
 - Calculation and mapping of buildings damage distributions
- Deterministic scenario
 - Ratio of partial or total collapse <2%,
 - → reduced number of potential victims, non structural damages
 - Considerable number of buildings in D3 in downtowns as Vielha or Bagnères de Luchon

→ important number of people without shelters

- Probabilistic scenario
 - Necessary to avoid bias due to wave propagation effects for damage comparison between two neighbourhood (attenuation of seismic motion when moving away from epicenter)
 - Expected damage more important into valleys (higher site effect)
 - Higher damage on French side (buildings concentration into valleys, lower number of recent buildings)
 - Lower damage in Val d'Aran (construction around ski resort more recent and on bedrock).