

Authors: Agathe ROULLÉ ⁵, Bastien COLAS ⁵

Mots-clés : Effets de site, risque sismique, Bagnères-de-Luchon, Luchon, MASW, H/V, bruit de fond sismique, mesures en réseau

- 1. IGC, Intitut Geològic de Catalunya
- 2. OMP, Université Paul Sabatier, Observatoire Midi-Pyrénées
- 3. UPC, Universitat Politècnica de Catalunya
- 4. IGN, Instituto Geografico Nacional
- 5. BRGM

© 2012 SISPYR project

M 4.2 Scénarios sismiques

Synthèse

Dans le cadre du projet SISPYR (action 4.2), une étude de l'aléa sismique local, c'est-àdire de l'amplification du mouvement sismique liée à la géologie superficielle, a été réalisée dans la zone pilote du Val d'Aran-Luchonnais. Le but de cette étude était de fournir les amplifications du mouvement sismique à attendre en cas de séisme pour les scénarios de dommages sismiques réalisés sur la zone (action 4.2) en termes d'incrément d'intensité.

Le présent rapport synthétise les études réalisées par le BRGM sur la partie française de la zone, à savoir les cantons de Luchon et St Béat.

Le travail s'est déroulé en plusieurs étapes :

- Harmonisation de la géologie superficielle de part et d'autre de la frontière ;
- Mesures géophysiques de trois types (H/V, MASW et bruit de fond en réseau) pour définir la fréquence de résonance des sols et les vitesses d'ondes de cisaillement (Vs) dans les couches géologiques superficielles ;
- Interprétation conjointe des données géologiques et géophysiques et simulations 1D des effets de site lithologiques sur la zone d'étude ;
- Définition d'un zonage sismique des effets de site lithologiques homogène à toute la zone d'étude.

Les mesures géophysiques ont confirmé que la zone pilote du Luchonnais était soumise à des effets de site lithologiques importants. Elles ont également montré des fréquences de résonance très basses (< 1 Hz), correspondant à des remplissages profonds de l'ordre de la centaine de mètres de profondeur, aussi bien dans les alluvions de la vallée de la Pique au Nord de Bagnères-de-Luchon (entre Bagnères et Juzet-de-Luchon) qu'au Nord de la zone d'étude, entre Marignac et Chaum. C'est une particularité de la vallée que l'on ne retrouve pas côté espagnol et qui est dû à la présence d'un ancien verrou glaciaire au niveau de Cierp.

Du fait de la configuration particulière de la vallée et de l'importante profondeur des remplissages meubles, il n'a pas été possible de contraindre correctement les modèles de colonnes de sol 1D en profondeur. En conséquence les simulations 1D n'ont pas donné de résultats fiables et n'ont pas été utilisées pour le zonage final.

Finalement, le zonage des effets de site lithologiques s'est basé sur les classes de sol EC8 modifiées utilisées dans le module 4.1 du projet SISPYR. Ces classes de sol ont été définies soit à partir des valeurs de $V_{s,30}$ basées sur les mesures géophysiques disponibles, soit ,quand aucune mesure directe n'était disponible, à dire d'expert.

Les effets de site lithologiques observés dans la vallée sont très particuliers et mériteraient une analyse plus poussée via la réalisation de simulations 2D et/ou 3D et une meilleure caractérisation des propriétés mécaniques des sols (en termes géotechniques notamment). Cela permettrait notamment d'affiner les scénarios de dommages en tenant compte par exemple des fréquences de résonance des sols observés dans la zone et des effets d'amplification du mouvement sismique potentiels en bordure de vallée.

SISPYR / Interreg IVA

Sommaire

1.	Introd	oduction9						
2.	Conte	exte géologique	10					
2.1.	Con	texte géologique local1	10					
2	.1.1.	La zone axiale	10					
2	.1.2.	La Zone Nord Pyrénéenne	11					
2 g	. 1.3. Iaciaires	Particularisme : les glaciers quaternaires et alluvions fluvio-lacustres post	ost-					
2.2.	Hari	monisation géologique transfrontalière	12					
3.	Camp	agne géophysique	15					
3.1.	Mes	sures réalisées	15					
3.2.	Rés	ultats1	16					
3	.2.1.	Moraines de la vallée de Garin	17					
3	.2.2.	Alluvions de la vallée d'Oô	18					
3	.2.3.	Cône de déjection de Bagnères-de-Bigorre et alluvions de St Mamet	19					
3	.2.4.	Alluvions de la vallée de la Pique	22					
3	.2.5.	Alluvions modernes et cône de déjection de Cierp-Gaud / Marignac2	24					
3	.2.6.	Terrasses post-glaciaires de Chaum et alluvions raides de Cierp-Gaud2	25					
3	.2.7.	Moraines de Cierp-Gaud	26					
3.3.	Zon	age EC8 modifié2	27					
3.4.	Carl	te des zones à effets de site avec modélisation 1D possible	29					
4.	Simul	ations 1D	31					
4.1.	Mét	hodologie	31					
4.2. Colonnes de sol et résultats des simulations								
4	.2.1.	S1 - Moraines de Garin						
4.2.2.		S2 - Alluvions de la vallée d'Oô	34					

8.	Annex	(es	49
7.	Référe	ences	47
6.	Concl	usions	45
5.	Zonag	ge sismique final en termes d'incrément d'intensité	43
4.4.	Limi	tes de l'exercice	40
4.3.	Incre	éments d'intensité	39
4	.2.7.	S7 – Terrasses et alluvions raides de Cierp-Gaud	39
4	.2.6.	S6 – Alluvions modernes et cône de déjection de Cierp-Gaud	38
4	.2.5.	S5 – Moraines de Cierp-Gaud	37
4	.2.4.	S4 - Alluvions de la vallée de Luchon	36
4	.2.3.	S3 - Cônes de déjection de Bagnères-de-Luchon	35

Tables des figures

Figure 9 : Résultats des mesures géophysiques réalisées sur la ville de Bagnères-de-Luchon en termes de fréquence de résonance et de valeur de Vs,30. Les résultats sont superposés à la carte géologique des formations superficielles et au scan25 de l'IGN.....20

Figure 10 : Profils MASW réalisés sur la zone sud de la vallée de Bagnères-de-Luchon 21
Figure 11 : Inversion conjointe des données MASW et bruit de fond en réseau sur le site 1 (près du stade), d'après Kingne Massoh (2011) 21
Figure 12 : Profils MASW réalisés sur les alluvions de la vallée de la Pique 22
Figure 13 : Mesures H/V obtenues sur le site 2 du bruit de fond en réseau, près de l'aérodrome
Figure 14 : Inversion conjointe MASW et bruit de fond en réseau sur le site 2 du bruit de fond en réseau, près de l'aérodrome (extrait du rapport Kingne Massoh, 2011)
Figure 15 : Résultats des mesures géophysiques réalisées sur la zone de Cierp-Gaud, Marignac et Chaum au Nord de la vallée. Les résultats sont donnés en termes de fréquence de résonance et de valeur de Vs,30. Les résultats sont superposés à la carte géologique des formations superficielles et au scan25 de l'IGN
Figure 16 : profils MASW réalisés sur les alluvions modernes de Cierp-Gaud et le cône de déjection de Marignac
Figure 17 : profils MASW réalisés sur les alluvions raides de Cierp-Gaud et les terrasses de Chaum
Figure 18 : profil MASW réalisé sur les moraines de Cierp-Gaud
Figure 19 : Zonage EC8 modifié de la vallée de Luchon, zoom sur la zone de Bagnères-de- Luchon
Figure 20 : Zonage EC8 modifié de la vallée de Luchon, zoom sur la zone de Cierp-Gaud / Marignac / Chaum
Figure 21 : Zonage EC8 modifié de la vallée de Luchon 29
Figure 22 : Localisation des zones à effets de site lithologiques pour lesquelles des calculs 1D ont été réalisés
Figure 23 : colonne de sol de la zone S1 (Moraines de la vallée de Garin)
Figure 24 : Spectres de réponse en accélération moyen pour la colonne S1 (courbe rouge) et pour le rocher (courbe noire)
Figure 25 : colonne de sol de la zone S2 (Alluvions de la vallée d'Oô)
Figure 26 : Spectres de réponse en accélération moyen pour la colonne S2 (courbe rouge) et pour le rocher (courbe noire)
Figure 27 : colonne de sol de la zone S3 (Cône de déjection de Bagnères-de-Luchon) 35

Figure 28 : Spectres de réponse en accélération moyen pour la colonne S3 (courbe rouge) et pour le rocher (courbe noire)
Figure 29 : colonne de sol de la zone S4 (Alluvions de la vallée de Luchon)36
Figure 30 : Spectres de réponse en accélération moyen pour la colonne S4 (courbe rouge) et pour le rocher (courbe noire)
Figure 31 : colonne de sol de la zone S5 (Moraines de Cierp-Gaud)37
Figure 32 : Spectres de réponse en accélération moyen pour la colonne S5 (courbe rouge) et pour le rocher (courbe noire)
Figure 33 : colonne de sol de la zone S6 (Alluvions modernes et cône de déjection de Cierp_Gaud)
Figure 34 : Spectres de réponse en accélération moyen pour la colonne S6 (courbe rouge) et pour le rocher (courbe noire)
Figure 35 : colonne de sol de la zone S7 (Terrasses et alluvions raides de Cierp-Gaud)39
Figure 36 : Spectres de réponse en accélération moyen pour la colonne S7 (courbe rouge) et pour le rocher (courbe noire)
Figure 37 : Incréments d'intensité obtenus pour les sept zones bénéficiant de simulations 1D40
Figure 38 : Zonage des effets de site lithologiques en termes d'incréments d'intensité pour la vallée de Luchon
Figure 39 - Dispositif MASW (à gauche : « flûte » de géophones, à droite : station d'acquisition)
Figure 40 : Dispositif H/V : à gauche : la station d'acquisition CityShark et à droite : le sismomètre tridimensionnel Lennartz 5 secondes
Figure 41 : Localisation des mesures géophysiques réalisées dans la vallée de Luchon (secteur de Bagnères-de-Luchon)
Figure 42 : Localisation des mesures géophysiques réalisées au Nord de la vallée de Bagnères-de-Luchon (secteur de Cierp-Gaud)60
Figure 43 : Localisation des mesures géophysiques réalisées au Nord de la vallée de Bagnères-de-Luchon (secteur de Garin)60

1. Introduction

Dans le cadre du projet SISPYR (Système d'Information Sismique des Pyrénées), une étude de l'aléa sismique local, c'est-à-dire de l'amplification du mouvement sismique liée à la géologie superficielle, a été réalisée dans la zone pilote du Val d'Aran-Luchonnais. Le but de cette étude était de fournir les amplifications du mouvement sismique à attendre en cas de séisme pour les scénarios de dommages sismiques réalisés sur la zone (action 4.2).

Le présent rapport synthétise les études réalisées par le BRGM sur la partie française de la zone, à savoir les cantons de Luchon et St Béat (Figure 1).

Figure 1 – Situation, communes zone pilote et réseau routier © fond Google Earth.

2. Contexte géologique

La zone pilote s'inscrit au sein de la zone axiale, en limite sud de la zone dite « nordpyrénéenne ».

Figure 2 – Localisation du département de la Haute-Garonne sur une carte géologique simplifiée du bassin d'Aquitaine, d'après la carte géologique de la France à 1/1 000 000 6 éd. Révisée (BRGM Editeur)

2.1. Contexte géologique local

2.1.1. La zone axiale

Elle est composée de roches sédimentaires à méta-sédimentaires traversées par des massifs granitiques carbonifères. Les séries les plus anciennes, attribuées au Cambro-Ordovicien, sont monotones et composées de schistes quartzeux, pélites et grès. Le sommet de la série forme des niveaux repères avec les calcaires du Caradocien (455 Ma) et les « schistes bleus » rubanés de l'Ashgillien (445 Ma). Viennent par-dessus les schistes carbonés et ampélites du Silurien.

Le Dévonien est présent sur une large surface d'affleurement avec des alternances de schistes et de calcaires, dont les calcaires « griottes » du Fammennien (365 Ma) au sommet de la série. Le Carbonifère se compose de calcaire, de grès et de schistes, précédant les dépôts de brèches rouges du Permien (295 Ma).

Les formations du paléozoïque inférieur ont été métamorphisées durant le Carbonifère (359 à 299 Ma) lors de l'orogénèse hercynienne, dont la zone axiale pyrénéenne et la montagne noire constituaient les zones externes.

Les deux massifs granitiques du Lis-Caillauas et du dôme de la Garonne, mis en place au cours du Carbonifère supérieur sont intrusifs au sein des séries paléozoïques, et responsables d'un métamorphisme de contact se superposant au métamorphisme régional épizonal hercynien.

La zone axiale est séparée de la Zone Nord Pyrénéenne par la faille Nord Pyrénéenne d'orientation N110° sur laquelle s'arrêtent les terrains paléozoïques. C'est le long de cet accident que se concentre le métamorphisme pyrénéen de Haute température et Basse pression, caractéristique de la zone interne métamorphique.

2.1.2. La Zone Nord Pyrénéenne

Elle est caractérisée par la présence à l'affleurement de séries mésozoïques bien développées et de deux massifs paléozoïques dits nord pyrénéens. Les dépôts triasiques sont continentaux et débutent par des poudingues et grès auxquels succèdent des argiles évaporitiques et marnes bariolées. Le Trias terminal est caractérisé par la mise en place d'Ophites intrusives liées à un magmatisme d'extension crustale.

Les terrains jurassiques sont une succession de calcaires et dolomies déposés au cours d'une importante transgression marine envahissant les régions des actuels Pyrénées et Bassin aquitain. Celle-ci se poursuit durant le Crétacé inférieur, caractérisé par les importantes épaisseurs de calcaires de plate-forme à faciès Urgonien. La plate-forme se disloque au Crétacé moyen par l'ouverture de bassins profonds transtensifs, contrôlant des dépôts localisés de flysch depuis l'Aptien (125 Ma) jusqu'au Santonien (85 Ma). L'extension maximale des bassins aurait été atteinte entre l'Albien et le Cénomanien, période durant laquelle le manteau supérieur est exhumé permettant la mise en place des lherzolites. A la fin du Crétacé supérieur (70 Ma), le rapprochement entre l'Ibérie et l'Europe entraine une régression marine et le retour à des dépôts de plateforme du Maastrichtien, Calcaire Nankin et marnes d'Auzas. Ce type de sédimentation se poursuite au début du Tertiaire.

La Zone Nord pyrénéenne est séparée du Bassin Aquitain par le chevauchement frontal Nord pyrénéen. Il constitue le chevauchement le plus septentrionale de la chaîne des Pyrénées et se localise dans les dépôts paléocènes au niveau des plis anticlinaux des petites Pyrénées.

2.1.3. <u>Particularisme : les glaciers quaternaires et alluvions fluvio-</u> lacustres post-glaciaires

Les glaciers quaternaires alimentés par les hautes montagnes du versant nord de la haute chaîne ont été très développés, mais de façon inégale sur la zone.

Les vallées de la Pique et de la Garonne ont été occupées par des glaciers beaucoup plus longs que ceux des Nestes, plus à l'Ouest. Les constructions morainiques des stades principaux de stationnement n'apparaissent que loin vers l'aval. Sur la zone, se trouvent surtout des placages morainiques laissés par les derniers stades de la déglaciation.

Après la disparition des grands glaciers quaternaires, le fond des vallées en auge a été occupé sur ses bordures par des cônes de déjection alimentés par l'érosion des dépôts glaciaires abandonnés sur les versants et, dans sa partie centrale, par des alluvions fluvio-glaciaires ou fluviolacustres, épaisses de plusieurs dizaines de mètres dans les ombilics. Sur le bas des versants se sont mises en place des formations variées : brèches litées périglaciaires, donnant des versants réglés, colluvions solifluées provenant du remaniement des moraines abandonnées sur les versants.

Dans la haute montagne tardivement déglacée, où subsistent encore de petits glaciers dans le massif de Luchon et celui des Posets, une active gélifraction a produit d'abondants pierriers. Une partie de ces débris gélifractés a été reprise, au Tardiglaciaire, par des glaciers courts (1 à 2 km de long) et par des glaciers rocheux. Les cuvettes lacustres les moins profondes, dues au surcreusement glaciaire, ont été comblées par des apports descendus des versants (cônes de déjection, cônes d'avalanche) et par des tourbières.

Les alluvions fluvio-lacustres post-glaciaires occupent les fonds de vallée en auge, et sont généralement grossières. Elles proviennent d'une part du remaniement, par les rivières tardi- et post-glaciaires, des moraines d'ablation et d'autre part des apports longitudinaux de ces rivières. Elles forment des plaines d'accumulation en pente forte dans le sens longitudinal et audessus desquelles émergent parfois des têtes de verrous (Louron). Dans la vallée de la Garonne et celle de la Neste de Louron, elles occupent le fond de bassins étages, séparés par des verrous : bassins de Bordeta (800 m), de Bosost (720 m) et de Lès (640 m) pour la Garonne, bassins d'Artiguelongue (1100 m), de Loudenvielle (960 m) et de Vielle-Louron (900-940 m) pour la Neste de Louron. Elles contiennent des nappes aquifères qui alimentent de grosses sources. Les rivières s'y divisent en bras divagants dont le déplacement a formé des terrasses locales.

Dans la même situation que les précédentes, la plus vaste et la plus continue de ces plaines s'étale à 600 m d'altitude au fond de la vallée de Luchon. Elle semble avoir succédé à un lac retenu derrière le verrou de Cierp et comporte des étendues mal drainées, en particulier au Nord-Est de Bagnères-de-Luchon.

2.2. Harmonisation géologique transfrontalière

La donnée géologique est constituée par les cartes géologiques existantes et partagées entre BRGM et IGC dans le cadre du projet :

- carte des Pyrénées à l'échelle des Pyrénées (échelle 1 :400 000) ;
- cartes géologiques à l'échelle 1 :50 000 existant des deux côtés de la frontière.

Un des premiers travaux engagés par le projet a été l'harmonisation géologique au niveau transfrontalier à l'échelle du 1 :50 000. Ce travail a permis d'aboutir à une cartographie transfrontalière valorisée notamment pour la réalisation de scénarios de risque sismique dans le

Luchonnais-Val d'Aran. Le résultat de ce travail est présenté Figure 3. La synthèse des formations selon l'échelle de travail diffère fortement :

- 24 formations distinguées au 1:400 000 ;
- 131 formations distinguées au 1 :50 000.

La valorisation des données géologiques s'est concentrée sur les cartes à l'échelle 1 :50 000 plus précises et adaptées aux objets considérés :

Figure 3 – Carte géologique harmonisée transfrontalière (échelle 1 :50 000)

Figure 4 – Extraction sur la zone pilote de la carte géologique à 1 :400 000 des Pyrénées

3. Campagne géophysique

3.1. Mesures réalisées

Pour caractériser les propriétés mécaniques et l'épaisseur des formations superficielles susceptibles de présenter un effet de site lithologique, trois types de mesures géophysiques ont été réalisés :

- Des mesures H/V (Nakamura, 1989 ; Lachet et Bard, 1994) qui permettent de détecter les effets de site lithologiques et d'en déterminer la fréquence de résonance principale ;
- Des mesures MASW qui permettent de définir un profil de vitesse d'ondes S (Vs) avec la profondeur jusqu'à des profondeurs pouvant aller jusqu'à 30-40 m;
- Des mesures de bruit de fond en réseau qui permettent à la fois de calculer des rapports H/V et de définir un profil de vitesse d'ondes S avec la profondeur pour des profondeurs plus importantes que la MASW (jusqu'à une centaine de mètres environ dans notre cas);

Une brève description des méthodes H/V et MASW est disponible en annexe. La localisation et les résultats de toutes les mesures réalisées durant ce projet sont également disponibles en annexe.

L'analyse conjointe de ces données géophysiques permet de définir à la fois la vitesse Vs des couches superficielles ainsi que leur épaisseur.

Dans la vallée de Luchon, 70 mesures H/V ont été réalisées ainsi que 21 profils MASW et 3 sites ont été investigués par des mesures de bruit de fond sismique en réseau.

Figure 5 : Mesures géophysiques réalisées par le BRGM dans la vallée de Bagnères-de-Luchon.

3.2. Résultats

Les mesures H/V ont confirmé la présence d'effets de site lithologiques sur les formations suivantes :

- Alluvions de la vallée d'Oô, de la vallée de Bagnères-de-Luchon et de la zone de Cierp-Gaud/Marignac au Nord ;
- Cônes de déjection situés à Bagnères-de-Luchon et Marignac ;
- Moraines situées sur les hauteurs de Cierp-Gaud.

Par contre, les mesures H/V ont montré l'absence d'effet de site sur le manteau d'altération de moyenne montagne et des effets de site très localisés sur les moraines de la vallée de Garin.

Une analyse détaillée zone par zone et formation par formation est donnée dans la suite de ce chapitre.

3.2.1. Moraines de la vallée de Garin

Figure 6 : Résultats des mesures géophysiques réalisées sur vallée de St Aventin-Garin-Portet en termes de fréquence de résonance et de valeur de Vs30. Les résultats sont superposés à la carte géologique des formations superficielles et au scan25 de l'IGN.

Les investigations géophysiques réalisées dans la vallée de Garin (Figure 6) ont montré que les effets de site lithologiques étaient peu présents sur les moraines (absence de résonance sur la majorité des mesures hormis à Castillon de Larboust, où la mesure a probablement été faite sur une zone de remblais et n'est donc pas nécessairement représentative des moraines). Les profils MASW (Figure 7) confirment ce constat avec soit des formations raides en surface (Vs de l'ordre de 600 m/s) soit un substratum sismique présent dès la surface (profil 17).

Les valeurs de $V_{s,30}$ ¹obtenues d'après ces profils varient de 500 à 709 m/s ce qui donne des sols de classe A ou B selon les règles parasismiques européennes EC8.

$$V_{S,30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$$

¹ Le paramètre Vs,30 correspond à la vitesse moyenne des ondes S dans les 30 premiers mètres de profondeur. Si l'on considère N couches d'épaisseur h et de vitesse V d'ondes S, ce paramètre est défini comme suit :

Figure 7 : Profils MASW réalisés sur les moraines de la vallée de Garin.

3.2.2. <u>Alluvions de la vallée d'Oô</u>

Le profil MASW réalisé dans la vallée d'Oô (Figure 8) a montré que les dépôts alluvionnaires de la vallée d'Oô étaient suffisamment épais pour présenter un effet de site lithologique notable, qui se caractérise par une fréquence de résonance comprise entre 1.9 et 3.6 Hz. Le profil de vitesse obtenu donne des valeurs de vitesse Vs de l'ordre de 350 m/s sans atteindre le substratum sismique. Cela donne un sol de classe C selon les EC8.

Figure 8 : Profil MASW réalisé dans la vallée d'Oô.

3.2.3. <u>Cône de déjection de Bagnères-de-Bigorre et alluvions de St</u> <u>Mamet</u>

Dans la vallée de Bagnères-de-Luchon, on observe des effets de site notables sur le cône de déjection du centre-ville avec des fréquences de résonance variant de 5.4 Hz en bordure de vallée (faible épaisseur de dépôt) à 1.2 Hz en bord de rivière (Figure 9). On retrouve un comportement similaire sur la zone sud des alluvions entre le golf et St Mamet avec des fréquences variant de 7.5 Hz en bord de vallée à 1 Hz près du stade. Du fait de leur similarité en termes de fréquences de résonance et de vitesses Vs en surface, ces deux zones ont été regroupées pour les zonages réalisés par la suite.

Figure 9 : Résultats des mesures géophysiques réalisées sur la ville de Bagnères-de-Luchon en termes de fréquence de résonance et de valeur de Vs,30. Les résultats sont superposés à la carte géologique des formations superficielles et au scan25 de l'IGN.

En termes de profils de vitesse Vs (Figure 10), on observe des terrains (éboulis et graves) assez raides en surface (entre 300 et 400 m/s) sur une quinzaine de mètres d'épaisseur, puis des schistes de 20 à 40 mètres d'épaisseur avec des vitesses de l'ordre de 500 m/s. La fin du profil est délicate à contraindre mais l'analyse conjointe du profil MASW 16 et des mesures en réseau réalisées sur le site 1 (Kingne Massoh, 2011) ont permis de définir un profil indicatif

avec un horizon rapide (Vs autour de 800 à 1000 m/s) d'une cinquantaine de mètres surmontant une formation rocheuse de vitesse supérieure à 2000 m/s. Il est à noter que les calculs 1D ont été faits en considérant comme substratum rocheux la formation à 800-1000 m/s située sous les schistes. Le modèle n'est pas assez bien contraint pour prendre en compte la formation rocheuse la plus profonde. Ces formations correspondent à une classe B selon les classes EC8.

Figure 10 : Profils MASW réalisés sur la zone sud de la vallée de Bagnères-de-Luchon.

Figure 11 : Inversion conjointe des données MASW et bruit de fond en réseau sur le site 1 (près du stade), d'après Kingne Massoh (2011)

3.2.4. <u>Alluvions de la vallée de la Pique</u>

Les résultats obtenus dans la vallée de la Pique, au Nord de Montauban-de-Luchon sont très intéressants avec des fréquences de résonance très basses (de l'ordre de 0.5 à 0.8 Hz), ce qui correspond à une résonance induite par un dépôt très profond, supérieur à la centaine de mètres (Figure 9). On ne retrouve pas du tout cette configuration dans la partie espagnole de la zone pilote du fait de la morphologie même des vallées, beaucoup plus étroites et avec des remplissages peu profonds. L'épaisseur des dépôts observés du côté français s'explique essentiellement par l'histoire géologique récente. En effet, la plaine de Luchon semble avoir succédé à un lac retenu derrière le verrou glaciaire de Cierp.

Les profils MASW (Figure 12) montrent des vitesses Vs comprises entre 200 et 300 m/s en surface (au moins sur les quinze premiers mètres) et des vitesses qui augmentent peu avec la profondeur. Les profils sont homogènes sur toute la vallée hormis pour le profil 7 situé à Beauséjour et qui présente une interface nette autour de 15 m de profondeur. Ces formations correspondent à une classe C selon les classes EC8.

Figure 12 : Profils MASW réalisés sur les alluvions de la vallée de la Pique.

L'inversion conjointe des données MASW et réseau sur le site 2 près de l'aérodrome montre des vitesses une interface nette autour de 20 mètres de profondeur (les valeurs de Vs passent de 200 m/s à 500 m/s), ce qui correspond bien au pic H/V observé autour de 2.5 Hz sur les mesures en réseau (Figure 13), puis une augmentation graduelle de la vitesse Vs avec la profondeur au-delà de 50 mètres (Figure 14). La fin du profil (au-delà de la centaine de mètres) est mal contrainte du fait de la géométrie utilisée lors de l'acquisition avec une ouverture maximale du réseau de 100 m de diamètre : nous n'avons donc pas assez d'information quantitative pour contraindre les paramètres de l'interface responsable des fréquences principales de résonance observées autour de 0.6 Hz.

SISPYR / Interreg IVA

Figure 13 : Mesures H/V obtenues sur le site 2 du bruit de fond en réseau, près de l'aérodrome.

Figure 14 : Inversion conjointe MASW et bruit de fond en réseau sur le site 2 du bruit de fond en réseau, près de l'aérodrome (extrait du rapport Kingne Massoh, 2011)

3.2.5. <u>Alluvions modernes et cône de déjection de Cierp-Gaud /</u> Marignac

Figure 15 : Résultats des mesures géophysiques réalisées sur la zone de Cierp-Gaud, Marignac et Chaum au Nord de la vallée. Les résultats sont donnés en termes de fréquence de résonance et de valeur de Vs,30. Les résultats sont superposés à la carte géologique des formations superficielles et au scan25 de l'IGN. Le sud des alluvions modernes de la vallée de Cierp-Gaud et le cône de déjection cartographié à Marignac présentent des fréquences de résonance cohérentes, comprises entre 1.1 au centre de la vallée et 3 Hz en bordure de vallée (Figure 15). Les profils MASW obtenus dans cette zone indiquent des vitesses Vs entre 200 et 300 m/s en surface et de l'ordre de 400 m/s autour de 30 m de profondeur (Figure 16). Le substratum rocheux n'est pas atteint. Cela correspond à des formations de classe C selon les EC8.

Figure 16 : profils MASW réalisés sur les alluvions modernes de Cierp-Gaud et le cône de déjection de Marignac.

3.2.6. <u>Terrasses post-glaciaires de Chaum et alluvions raides de Cierp-Gaud</u>

La zone Nord des alluvions modernes de Cierp-Gaud et du cône de déjection de Marignac ainsi que les terrasses post-glaciaires de Chaum présentent des comportements similaires avec des fréquences de résonance très basses, comprises entre 0.6 et 0.8 Hz et indicatrices d'un remplissage profond, et des vitesses Vs assez raides en surface (Figure 15). Les profils MASW enregistrés sur la zone indiquent des valeurs de vitesse Vs de l'ordre de 400 à 500 m/s dès 10 mètres de profondeur, à comparer aux 300 m/s obtenus dans les alluvions modernes de la Figure 16 pour la même profondeur (Figure 17).

Cette zone correspond à des sols de classe B selon les EC8 et peut être classée en classe B' selon la classification EC8 modifiée utilisée dans le projet pour indiquer des profondeurs de remplissage supérieures à la centaine de mètres.

Figure 17 : profils MASW réalisés sur les alluvions raides de Cierp-Gaud et les terrasses de Chaum.

3.2.7. Moraines de Cierp-Gaud

Les moraines situées sur les hauteurs de Cierp-Gaud présentent des résonances marquées et plutôt haute fréquence avec des fréquences de résonance variables spatialement (entre 2.6 et 6 Hz, Figure 15). Le profil MASW réalisé sur la zone indique des sols de vitesse Vs moyenne, de l'ordre de 350-400 m/s. Il n'atteint pas le substratum rocheux qui doit être situé autour de 35 m de profondeur d'après l'analyse conjointe H/V-MASW.

Ces moraines ont été classées en classe C d'après les EC8.

Il est intéressant de noter la grande différence entre les caractéristiques de ces moraines et de celles investiguées dans la vallée de Garin, qui présentent des profils de vitesses beaucoup plus rapides (Figure 7). Ces résultats rejoignent des observations similaires montrant la forte variabilité spatiale des dépôts glaciaires réalisées notamment sur la ville de Lourdes lors du microzonage sismique réalisée en 2005 (Bernardie et al., 2006 ; Souriau et al., 2007).

Figure 18 : profil MASW réalisé sur les moraines de Cierp-Gaud.

3.3. Zonage EC8 modifié

Toutes les analyses décrites précédemment ont été reprises afin de définir un zonage des effets de site lithologiques selon les classes de sol EC8 modifiées dans le cadre du projet (action 4.1).

Globalement, les limites de zone suivent la cartographie des formations géologiques présentées dans le chapitre **¡Error! No se encuentra el origen de la referencia.** à l'exception des cas suivants :

- Les alluvions du sud de la vallée de la Pique (vers Saint Mamet) ont été regroupées avec le cône de déjection de Bagnères-de-Luchon du fait de fréquences de résonance et de vitesses Vs similaires (Figure 19);
- Le reste des alluvions modernes de Cierp-Gaud, du cône de déjection de Marignac et les terrasses de Chaum ont été regroupés pour les mêmes motifs.

Les classes EC8 modifiées ont été attribuées soit à partir des résultats décrits dans les paragraphes précédents soit à dire d'expert avec les informations disponibles dans la zone d'étude (description géologique, sondages géotechniques, études antérieures dans des zones de dépôts similaires comme à Lourdes (Bernardie et al., 2006; Souriau et al., 2007) ou en Cerdagne (Roullé et al., 2006).

SISPYR / Interreg IVA

Par exemple, les éboulis et cônes de déjection de petite extension situés en bord de vallée ont été classés en classe B par souci d'homogénéité avec les résultats obtenus côté espagnol à Bóssost notamment.

Figure 19 : Zonage EC8 modifié de la vallée de Luchon, zoom sur la zone de Bagnères-de-Luchon.

Figure 20 : Zonage EC8 modifié de la vallée de Luchon, zoom sur la zone de Cierp-Gaud / Marignac / Chaum.

Le zonage final est représenté sur la Figure 21.

Figure 21 : Zonage EC8 modifié de la vallée de Luchon.

3.4. Carte des zones à effets de site avec modélisation 1D possible

L'analyse conjointe des données géologiques et géophysiques a permis de distinguer 7 zones pour lesquelles nous disposons d'informations suffisantes pour simuler la réponse des sols sous sollicitation sismique à partir de modélisations 1D. Ces zones sont cartographiées sur la figure suivante. Le détail des calculs réalisés est présenté dans le chapitre 4.

Pour les autres zones, deux solutions sont possibles :

- Soit il s'agit de rocher, qui ne nécessite pas de simulation 1D ;
- Soit les informations nécessaires à la bonne réalisation de simulations 1D ne sont pas disponibles, auquel cas ce sont les classes de sol EC8 qui seront utilisées pour les caractériser.

SISPYR / Interreg IVA

Figure 22 : Localisation des zones à effets de site lithologiques pour lesquelles des calculs 1D ont été réalisés.

4. Simulations 1D

Ce paragraphe décrit le travail réalisé pour simuler les réponses sismiques 1D des sept zones définies précédemment et représentées sur la Figure 22.

Pour chaque zone, on a ainsi calculé les spectres de réponse en accélération moyen, spectres qui ont été traduits en incréments d'intensité pour pouvoir être utilisé dans les scénarios sismiques.

4.1. *Méthodologie*

Le calcul d'une réponse de sol 1D représentative du mouvement sismique se fait en plusieurs étapes :

- Définition d'une colonne de sol représentative des formations géologiques superficielles en présence ;
- Définition de mouvements sismiques de référence au rocher horizontal affleurant, représentatifs de l'aléa régional (ici 5 accélérogrammes ont été utilisés) ;
- Simulation de la réponse 1D de la colonne de sol définie auparavant et soumise aux mouvements sismiques de référence via le logiciel CyberQuake ;
- Pour chaque zone étudiée, calcul d'un spectre de réponse en accélération moyen à partir des 5 simulations réalisées.

La colonne de sol représentative du terrain en place doit être décrite par la lithologie des horizons (sols cohérents, sols frottants ou rocher), la stratigraphie (séquence et épaisseur) et les caractéristiques géomécaniques des horizons. Par ailleurs, les effets possibles de non linéarité ont été prise en compte via un modèle de sol linéaire équivalent implanté dans le logiciel CyberQuake (Modaressi et al., 1997).

Les formations lithologiques sont caractérisées par des valeurs moyennes telles que leur poids volumique, la vitesse des ondes P, la vitesse des ondes S, et les courbes $G(\gamma)/Gmax$ et $D(\gamma)$. Ces dernières fournissent les caractéristiques dynamiques des sols, nécessaires à la simulation du comportement d'une colonne de sol sous sollicitation sismique. Les courbes $G(\gamma)/Gmax$ et $D(\gamma)$ caractérisent la variation du module de cisaillement normalisé (G/Gmax) et du coefficient d'amortissement (D) du matériau en fonction de la distorsion en cisaillement cyclique γ c. Elles sont utilisées pour prendre en compte le comportement non-linéaire des matériaux rencontrés.

Dans cette étude, aucune donnée géotechnique ne permettait de définir les courbes $G(\gamma)/Gmax$ et $D(\gamma)$ de façon satisfaisante. Nous avons donc utilisé les mêmes courbes que du côté espagnol, à savoir Seed et al. (1986) définie pour les matériaux graveleux. Par ailleurs, nous avons conservé un comportement élastique pour les formations sous-jacentes raides, pour lesquelles aucune information sur les caractéristiques mécaniques n'était disponible.

Les colonnes de sol ainsi décrites ont été utilisées avec le logiciel CyberQuake pour calculer leur réponse à une sollicitation sismique au rocher. Le mouvement au rocher a été défini par cinq accélérogrammes réels ayant une réponse spectrale proche du spectre spécifique retenu dans le cadre de l'étude (Susagna et Goula, 2011). Finalement, le logiciel a permis de calculer la réponse sismique de la colonne de sol soumise à sa base à ces cinq accélérogrammes sous la forme d'accélérogrammes en surface, puis de spectres de réponse en accélération.

Pour chaque zone, nous donnons ci-dessous la description exacte des paramètres mécaniques des colonnes utilisées pour les simulations numériques. Chaque colonne est décrite de la façon suivante :

- type de formation
- épaisseur des couches ;
- vitesse des ondes S dans chaque couche ;
- vitesse des ondes P dans chaque couche ;
- poids volumique dans chaque couche ;
- courbes G(γ)/Gmax et D(γ) utilisées pour la prise en compte du comportement non-linéaire des matériaux rencontrées.

Le résultat obtenu est indiqué sous forme de spectre de réponse en accélération moyen (courbe rouge) à comparer au spectre de réponse au rocher (courbe noir).

4.2. Colonnes de sol et résultats des simulations

Nom	Epaisseur (m)	Vs	Vp	Rho	Courbe comportement
Moraines	20	550	1030	1800	Seed, 1986
Rocher altéré	15	700	1300	1900	-
Rocher	-	900	1870	2000	

4.2.1. S1 - Moraines de Garin

Figure 24 : Spectres de réponse en accélération moyen pour la colonne S1 (courbe rouge) et pour le rocher (courbe noire).

Nom	Epaisseur (m)	Vs	Vp	Rho	Courbes comportement
Alluvions	30	300	560	1800	Seed, 1986
Rocher	10	600	1100	1900	-
Rocher	-	800	1870	2000	

4.2.2. S2 - Alluvions de la vallée d'Oô

Figure 26 : Spectres de réponse en accélération moyen pour la colonne S2 (courbe rouge) et pour le rocher (courbe noire).

Nom	Epaisseur (m)	Vs	Vp	Rho	Courbe comportement
Eboulis, graves	12	350	650	1800	Seed, 1986
Schistes	50	500	930	1900	Seed, 1986
Rocher	-	800	1500	2000	

4.2.3. <u>S3 - Cônes de déjection de Bagnères-de-Luchon</u>

Figure 27 : colonne de sol de la zone S3 (Cône de déjection de Bagnères-de-Luchon)

Figure 28 : Spectres de réponse en accélération moyen pour la colonne S3 (courbe rouge) et pour le rocher (courbe noire).

Nom	Epaisseur (m)	Vs	Vp	Rho	Courbe comportement
Graves	15	200	370	1700	Seed, 1986
Schistes	30	350	650	1800	Seed, 1986
Schistes	30	500	930	1900	Seed, 1986
Rocher	-	800	1500	2000	

4.2.4. <u>S4 - Alluvions de la vallée de Luchon</u>

Figure 30 : Spectres de réponse en accélération moyen pour la colonne S4 (courbe rouge) et pour le rocher (courbe noire).
Nom	Epaisseur (m)	Vs	Vp	Rho	Courbe comportement
Dépôts glaciaires	5	250	470	1800	Seed, 1986
Dépôts glaciaires	20	380	710	1900	Seed, 1986
Dépôts glaciaires	10	250	470	1900	Seed, 1986
Dépôts glaciaires	10	450	840	2000	Seed, 1986
Rocher	-	800	1500	2000	

4.2.5. <u>S5 – Moraines de Cierp-Gaud</u>

Figure 32 : Spectres de réponse en accélération moyen pour la colonne S5 (courbe rouge) et pour le rocher (courbe noire).

Nom	Epaisseur (m)	Vs	Vp	Rho	Courbe comportement
Dépôts alluvionnaires ou colluvionnaires	5	300	560	1800	Seed, 1986
Dépôts alluvionnaires ou colluvionnaires	15	225	420	1900	Seed, 1986
Dépôts alluvionnaires ou colluvionnaires	25	400	748	1900	Seed, 1986
Rocher	-	800	1500	2000	

4.2.6. <u>S6 – Alluvions modernes et cône de déjection de Cierp-Gaud</u>

Figure 33 : colonne de sol de la zone S6 (Alluvions modernes et cône de déjection de Cierp_Gaud)

Figure 34 : Spectres de réponse en accélération moyen pour la colonne S6 (courbe rouge) et pour le rocher (courbe noire).

Nom	Epaisseur (m)	Vs	Vp	Rho	Courbe comportement
Dépôts alluvionnaires ou glaciaires	7	250	470	1800	Seed, 1986
Dépôts alluvionnaires ou glaciaires	33	425	795	1900	Seed, 1986
Dépôts alluvionnaires ou glaciaires	50	500	935	2000	Seed, 1986
Rocher	-	1000	1870	2200	

4.2.7. <u>S7 – Terrasses et alluvions raides de Cierp-Gaud</u>

Figure 36 : Spectres de réponse en accélération moyen pour la colonne S7 (courbe rouge) et pour le rocher (courbe noire).

4.3. Incréments d'intensité

Pour chaque zone soumise à des simulations 1D, nous avons caractérisé l'effet de site lithologique via le calcul un incrément d'intensité suivant la méthode décrite par Macau (2008). Cette méthode, basée sur les travaux de Cabañas et al. (1997), permet de relier l'incrément d'intensité macrosismique ΔI à l'intensité d'Arias au sol (Al_{sol}) et au rocher (Al_{rocher}) selon la formule :

$\Delta I=0.66 \ln(AI_{sol}/AI_{rocher}).$

Zone	Incrément d'intensité	
S1 - Moraines de Garin	0.5	
S2 – Alluvions de la vallée d'Oô	0.5	
S3 – Cône de déjection de Bagnères-de-Luchon	0.5	
S4 – Alluvions de la vallée de Luchon	0.5	
S5 – Moraines de Cierp-Gaud	0.5	
S6 – Alluvions modernes et cône de déjection de Cierp-Gaud	0	
S7 – Terrasses et alluvions raides de Cierp-Gaud	0	

Figure 37 : Incréments d'intensité obtenus pour les sept zones bénéficiant de simulations 1D.

Les résultats obtenus sont peu concluants et mériteraient une analyse plus approfondie.

Tout d'abord, deux des zones présentent un incrément nul (S6 et S7) alors que les données géophysiques montrent un effet de site notoire.

Par ailleurs, les autres zones présentent une valeur incrémentale identique (0.5 degré d'intensité) malgré des configurations de sol très variables impliquant aussi bien des sols raides à quasi rocheux comme la zone S1 (donc susceptibles de présenter une faible amplification du mouvement sismique) que des sols meubles susceptibles de présenter une forte amplification du mouvement sismique comme les alluvions de la vallée de la Pique ou le cône de déjection de Bagnères-de-Luchon.

Enfin, la notion de fréquence n'apparaît pas dans ce genre de calcul alors que les basses fréquences de résonance observées dans certaines zones (S4 et S7) pourraient s'avérer moins aggravantes pour le bâti courant que les fréquences de résonance supérieures à 1 Hz observées par exemple au centre de Bagnères-de-Luchon (zone S3).

4.4. Limites de l'exercice

A partir des données géophysiques disponibles, nous avons essayé de réaliser des modélisations 1D des effets de site lithologiques observés dans la vallée de Luchon. Les résultats sont intéressants mais présentent un nombre importants de limites décrites ci-après :

- La vallée de Luchon dispose de peu de données géotechniques qui auraient permis de mieux contraindre a minima les natures et épaisseurs des couches superficielles, et par là même, leurs caractéristiques mécaniques (courbes de comportement notamment);
- Les fréquences de résonance observées sont parfois très basses (< 1 Hz), ce qui implique des remplissages très profonds dont la géométrie et les caractéristiques mécaniques sont mal contraintes en profondeur (au-delà de la vingtaine de mètres en cas de mesure MASW, au-delà de la cinquantaine ou centaine de mètres en cas de mesures conjointes MASW et

bruit de fond en réseau). Les colonnes de sol utilisées pour les calculs 1D sont donc mal contraintes ce qui induit de fortes incertitudes sur les résultats ;

 La géométrie même de la vallée et la profondeur des dépôts alluvionnaires (supérieure à 100 m) rend l'hypothèse 1D utilisée pour notre zonage discutable. Une analyse 2D mériterait d'être menée sur la zone. Ce travail nécessiterait au minimum des mesures géophysiques et/ou géotechniques complémentaires pour affiner les modèles de sol.

Ces limites sont importantes à retenir pour la lecture des résultats présentés ici, et pour l'analyse des scénarios sismiques qui en découlent. En effet, les résultats des simulations 1D ne donnant pas des résultats satisfaisants, il a été décidé de ne pas en tenir compte pour le zonage final des effets de site lithologiques utilisé dans le cadre du scénario de risque.

5. Zonage sismique final en termes d'incrément d'intensité

La réalisation d'un scénario de risque sismique nécessite l'application d'un incrément d'intensité pour tenir compte des effets de site lithologiques. Vu les limites des simulations 1D et la faible confiance que nous avions dans les résultats obtenus, les incréments d'intensité ont été calculés à partir des spectres EC8 modifiés (action 4.1) et leur cartographie est basée sur la carte des classes de sol EC8 modifiées présenté sur la Figure 21. Le zonage final des effets de site lithologiques en termes d'incrément d'intensité est présenté sur la Figure 38.

Figure 38 : Zonage des effets de site lithologiques en termes d'incréments d'intensité pour la vallée de Luchon.

6. Conclusions

Le but de cette étude était d'évaluer la réponse sismique des sols sous sollicitation sismique dans la zone pilote du Luchonnais (cantons de Luchon et St Béat) pour la réalisation des scénarios de dommages de l'action 4.2 du projet SISPYR.

Le travail s'est déroulé en plusieurs étapes :

- Harmonisation de la géologie superficielle de part et d'autre de la frontière ;
- Mesures géophysiques de trois types (H/V, MASW et bruit de fond en réseau) pour définir la présence ou non d'amplification du mouvement du sol liée à la géologie superficielle (« effets de site lithologiques »), la fréquence de résonance des sols, les vitesses d'ondes de cisaillement (Vs) dans les couches géologiques superficielles ;
- Interprétation conjointe des données géologiques et géophysiques et simulations 1D des effets de site lithologiques sur la zone d'étude ;
- Définition d'un zonage sismique des effets de site lithologiques homogène à toute la zone d'étude rendu sous forme d'une carte des incréments d'intensité pour les scénarios de dommages.

Les mesures géophysiques ont confirmé que la zone pilote du Luchonnais était soumise à des effets de site lithologiques importants, notamment sur les alluvions de la Pique et les cônes de déjection présents notamment à Bagnères-de-Luchon et dans la zone de Marignac. Elles ont également montré des fréquences de résonance très basses (< 1 Hz), correspondant à des remplissages profonds de l'ordre de la centaine de mètres de profondeur, aussi bien dans les alluvions de la vallée de la Pique au Nord de Bagnères-de-Luchon (entre Bagnères et Juzet-de-Luchon) qu'au Nord de la zone d'étude, entre Marignac et Chaum. C'est une particularité de la vallée que l'on ne retrouve pas côté espagnol et qui est dû à la présence d'un ancien verrou glaciaire au niveau de Cierp.

Du fait de la configuration particulière de la vallée et de l'importante profondeur des remplissages meubles, il n'a pas été possible de contraindre correctement les modèles de colonnes de sol 1D en profondeur. En conséquence les simulations 1D n'ont pas donné de résultats fiables et n'ont pas été utilisées pour le zonage final.

Finalement, le zonage des effets de site lithologiques s'est basé sur les classes de sol EC8 modifiées utilisées dans le module 4.1 du projet SISPYR. Ces classes de sol ont été définies soit à partir des valeurs de $V_{s,30}$ basées sur les mesures disponibles, soit à dire d'expert.

Les effets de site lithologiques observés dans la vallée sont très particuliers et mériteraient une analyse plus poussée via la réalisation de simulations 2D et/ou 3D et une meilleure caractérisation des propriétés mécaniques des sols (en termes géotechniques notamment). Cela permettrait notamment d'affiner les scénarios de dommages en tenant compte par exemple des fréquences de résonance des sols observés dans la zone et des effets d'amplification du mouvement sismique potentiels en bordure de vallée.

7. Références

Bernardie S., Delpont G., Dominique P., Le Roy S., Negulescu C., Roullé A. (2006) – Microzonage sismique de Lourdes. 235 p., 87 fig., 35 tabl., 12 pl. hors texte., Rapport BRGM/RP-53846-FR.

Borcherdt, R.D. (1970). Effects of local geology on ground motion near San Francisco Bay, *Bull. Seism. Soc. Am.*, **60**, 29-61.

Field, E.H., and K.H. Jacob (1995). A comparison and test of various site-response estimation techniques, including that are not reference-site dependent, *Bull. Seism. Soc. Am.*, **85**, 1127-1143.

Kingne Massoh, L. (2011). Inversion des données de bruit de fond réseau dans la vallée de Luchon et application à la problématique des effets de site. Rapport de Master 2 (Génie Pétrolier, parcours exploration géophysique), Université de Pau et Pays de l'Adour, 2011.

Lachet, C., and Bard P.Y (1994). Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique, J. Phys. Earth, 42, 377-397.

Lermo, J., and F.J. Chávez-García (1993). Site effect evaluation using spectral ratios with only one station, *Bull. Seism. Soc. Am.*, **83**, 1574-1594.

Modaressi H., Foerster E., Mellal A. (1997) - Computer aided seismic analysis of soils. Proc. Of the 6th Int Symp. On Numerical Models in Geomechanics, NUMOG VI, Montréal, Québec, Canada July 2-4.

Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, QR of RTR1, 30, 1, 25-32.

Seed, H.B., Wong, R.T., Idriss, I.M. and Tokimatsu, K. (1986) Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils. Journal of Geotechnical Engineering, ACE, Vol 112, N° 11, pp 1016-1032.

Souriau A., A. Roullé, C. Ponsolles (2007). "Site effects in the city of Lourdes, France, from H/V measurements. Implication for the seismic risk evaluation", Bull. Seism. Soc. Am., 97, 2118-2136.

Roullé A., A. Macau, S. Figueras, A. Bitri, B. Colas, B. Le Brun, T. Susagna, J. Cirés, E. Bertrand (2006). "Trans-national study of site effects, the Cerdanya valley across French and Spanish Pyrenees". Third International Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France, 30th August – 1st September 2006, 10 pp.

Susagna, T. and X. Goula (2011). Nota sobre la selección de registros para el análisis de amplificación de suelos en la región Val d'Aran, Luchon y St Béat. Reporte SISPYR del 29-09-2011.

8. Annexes

ANNEXE 1 Implantation des mesures géophysiques et description des méthodes MASW et H/V

La méthode MASW

Cette méthode est basée sur la dispersion des ondes de surface pour la détermination des vitesses des ondes de cisaillement Vs dans les premières dizaines de mètres du sous sol. Elle permet d'obtenir un profil de vitesse, en plusieurs points, pour un coût largement inférieur aux méthodes destructives habituellement utilisées en géotechnique *(cross-hole)*. La vitesse des ondes de cisaillement Vs intervient dans l'évaluation des modifications du signal sismique à la surface par rapport au mouvement au rocher (effets de site). C'est donc un paramètre déterminant dans une étude d'aléa sismique local ou de microzonage sismique.

Le matériel nécessaire pour effectuer des mesures sismiques des ondes de surface est composé d'une centrale d'acquisition sismique, de géophones (Figure 39) et d'une source impulsionnelle (ici une chute de marteau).

Figure 39 - Dispositif MASW (à gauche : « flûte » de géophones, à droite : station d'acquisition)

Les ondes de surface se propagent parallèlement à la surface de la terre. Dans le cas d'un milieu dont les propriétés élastiques varient avec la profondeur, la vitesse des ondes de surface varie avec la longueur d'onde, et donc avec la fréquence. Cet effet est appelé dispersion. Suivant la fréquence considérée, les ondes de surface contiennent de l'information sur les milieux traversés entre la surface et la profondeur maximale de pénétration des différents modes. En analysant la dispersion de ces ondes, il est donc possible d'obtenir des informations sur les valeurs des paramètres physiques à différentes profondeurs. Le maximum d'énergie dans le diagramme de dispersion donne les courbes de dispersion. Ces courbes, ainsi que les barres d'erreurs associées, sont ensuite inversées à partir d'un modèle de vitesse *a priori*, dans le but de retrouver le profil vertical de vitesse des ondes S.

La méthode H/V bruit de fond sismique

De nombreuses techniques théoriques, numériques ou instrumentales ont été développées pour estimer les effets de site lithologiques (par ex. Borcherdt, 1970). Les techniques expérimentales font généralement appel à un site de référence, c'est-à-dire un site rocheux n'amplifiant pas le mouvement sismique. Ce site rocheux n'est pas toujours présent sur les zones d'études, ce qui peut engendrer des erreurs dans les estimations des effets de site. C'est pourquoi des techniques plus récentes, ne faisant pas intervenir de site de référence, ont été mises au point (Lermo et Chávez-García, 1993). L'une de ces techniques consiste, à partir de l'enregistrement du bruit de fond ambiant, à calculer le rapport spectral entre les composantes horizontales et la composante verticale : c'est la méthode appelée couramment H/V (Nakamura, 1989). Le dispositif expérimental est constitué d'un sismomètre trois composantes et d'une station d'acquisition (Figure 40).

Figure 40 : Dispositif H/V : à gauche : la station d'acquisition CityShark et à droite : le sismomètre tridimensionnel Lennartz 5 secondes.

Les principes physiques sous-tendus par cette méthode ne sont actuellement pas tous bien cernés. Cependant, de nombreuses expériences ont comparé cette méthode avec des méthodes classiques et ont montré sa capacité à évaluer la fréquence propre du site puis, en conjonction avec d'autres éléments, les effets de site proprement dits (Lachet et Bard, 1994; Field et Jacob, 1995). L'explication la plus communément admise est la suivante : soit un modèle très simple constitué d'une couche meuble (souvent sédimentaire) surmontant un demi-espace homogène. Le bruit de fond est engendré par des sources proches comme le trafic urbain et donc composé d'ondes de surface. Seules les composantes horizontales sont amplifiées par les réflexions sur les interfaces des couches sous-jacentes. La composante verticale du bruit de fond contient, elle, la signature des sources de bruit. On suppose également que la base de la couche sédimentaire n'est pas affectée par les ondes de surface.

Pour obtenir une pseudo-fonction de transfert à l'aide du bruit de fond, en s'affranchissant de l'effet de source, on divise donc le spectre d'une composante horizontale par le spectre de la composante verticale (d'ou l'appellation H/V). Ce rapport donne avec une bonne précision la fréquence de résonance fondamentale du site (ou fréquence propre).

En définitive, la réalisation d'une campagne de mesures ponctuelles H/V permet, en première approche, de déterminer en chaque point de mesure la fréquence propre du sol.

Lorsque la géométrie du site peut être assimilée à un milieu mono-dimensionnel, On peut relier l'épaisseur d'une couche sédimentaire meuble (ayant un fort contraste d'impédance avec le substratum rocheux) à sa fréquence de résonance fondamentale f_0 par l'expression :

$$H = \frac{V_s}{4f_0}$$

avec H : épaisseur moyenne de la couche meuble,

- V_s : vitesse moyenne de propagation des ondes S dans la couche meuble,
- f_0 : fréquence de résonance fondamentale de la couche meuble.

ANNEXE 2 Implantation des mesures géophysiques

Figure 41 : Localisation des mesures géophysiques réalisées dans la vallée de Luchon (secteur de Bagnères-de-Luchon).

Figure 42 : Localisation des mesures géophysiques réalisées au Nord de la vallée de Bagnères-de-Luchon (secteur de Cierp-Gaud).

Figure 43 : Localisation des mesures géophysiques réalisées au Nord de la vallée de Bagnères-de-Luchon (secteur de Garin).

Tableau 1 : Mesures H/V réalisées dans la vallée de Luchon. La première colonne donne l'identifiant de la mesure et la dernière colonne le nom du fichier de données brutes.

חו	Lat WGS84	Long WGS84	Date	Fichier
ID.	1 42 916103	0 656567	Date	07/09/2010 100907 0758 001
	2 42.915838	0.660716	,	07/09/2010 100907 0721.002
	3 42.916232	0.654244	(07/09/2010 100907 0741.003
	4 42.915438	0.651427	(07/09/2010 100907_0801.004
	5 42.920699	0.665287	(07/09/2010 100907_0840.005
	6 42.923806	0.661739	(07/09/2010 100907_0859.006
	7 42.922897	0.674818	(07/09/2010 100907_0927.007
	8 42.91366	0.645304	(07/09/2010 100907_0959.008
	9 42.915313	0.64354	(07/09/2010 100907_1023.009
1	0 42.91433	0.637974	(07/09/2010 100907_1046.010
1	1 42.918456	0.636936	(J7/09/2010 100907_1114.011
1	2 42.916949	0.640301	(J7/09/2010 100907_1135.012
1	3 42.925522 4 42.022040	0.637869		J7/09/2010 100907_1204.013
1	4 42.922019	0.030014		J7/09/2010 100910_1406.015 07/09/2010 100907 1305 015
1	6 42 940477	0.049030		07/09/2010 100907_1340 016
1	7 42 934436	0.655752	Ì	07/09/2010 100910 1319 013
1	8 42.935019	0.652878	,	07/09/2010 100907 1433.018
1	9 42.929059	0.660697	(07/09/2010 100907 1451.019
2	42.926516	0.677851	(07/09/2010 100907 1514.020
2	42.788996	0.597122	(08/09/2010 100908_0612.001
2	2 42.789844	0.601033	(08/09/2010 100908_0639.002
2	3 42.791051	0.604272	(08/09/2010 100908_0657.003
2	4 42.790234	0.607775	(08/09/2010 100908_0716.004
2	5 42.790231	0.610966	(08/09/2010 100908_0737.005
2	6 42.785618	0.60161	(08/09/2010 100908_0845.006
2	7 42.785845	0.601172	(08/09/2010 100908_0909.007
2	8 42.817432	0.597934	(08/09/2010 100909_1513.018
2	9 42.807578	0.59715	(08/09/2010 100908_1244.009
3	0 42.808516	0.605049	(08/09/2010 100908_1331.010
3	1 42.809933	0.60864	(J8/09/2010 100908_1354.011
3	2 42.810302	0.607569		J8/09/2010 100908_1412.012
3	42.79010	0.009100		08/09/2010 100908 1503 014
3	4 42.790003 5 42.789071	0.000100		09/09/2010 100908_1303.014
3	6 42 78894	0.530524	Ì	09/09/2010 100909 0644 002
3	7 42 776643	0.601024	Ì	09/09/2010 100909 0715 003
3	8 42.779878	0.601501	(09/09/2010 100909 0742.004
3	9 42.779116	0.605511	(09/09/2010 100909_0808.005
4	0 42.796718	0.603283	(09/09/2010 100909_0836.006
4	1 42.798749	0.603145	(09/09/2010 100909_0905.007
4	2 42.797028	0.598387	(09/09/2010 100909_0943.008
4	3 42.792235	0.58713	(09/09/2010 100909_1102.009
4	4 42.802175	0.522595	(09/09/2010 100909_1136.010
4	5 42.791151	0.504759	(09/09/2010 100909_1201.011
4	6 42.805803	0.532237	(J9/09/2010 100909_1234.012
4	42.809485	0.520619	(J9/09/2010 100909_1301.013
4	5 42.807538	0.510012		J9/09/2010 100909_1320.014
4 5	9 42.800403 0 42.802457	0.505360		09/09/2010 100909_1339.015
5	1 42 800806	0.596173	Ì	09/09/2010 100909 1449 017
5	42.802232	0.599896		10/09/2010 100910 0753.004
5	3 42.788716	0.595162		10/09/2010 100910 0634.001
5	4 42.789059	0.591005		10/09/2010 100910 0703.002
5	5 42.808197	0.599403		10/09/2010 100910_0729.003
5	6 42.800973	0.608996		10/09/2010 100910_0840.005
5	7 42.810401	0.605991		10/09/2010 100910_0909.006
5	8 42.917665	0.643581		10/09/2010 100910_1002.007
5	9 42.916652	0.663192		10/09/2010 100910_1045.008
6	0 42.921585	0.661751		10/09/2010 100910_1119.009
6	1 42.922037	0.674917		10/09/2010 100910_1149.010
6	2 42.923052	0.667283		10/09/2010 100910_1217.011
6	42.930265	0.6561		10/09/2010 100910_1257.012
6	4 42.78826	0.47965	1	21/10/2010 101021_0/23.001
6		0.50739	-	21/10/2010 101021_0805.002
6	0 42.79029 7 43.00064	0.50807	-	21/10/2010 101021_0849.003
0	r 42.00204 R 10.76600	0.00037	:	21/10/2010 101021_0910.004
6	G 42.70000 G /2 76133	0.57019		21/10/2010 101021_1010.005
7	42.81195	0.61064		21/10/2010 101021 1139.007

Site	X_centre	Y_centre	ID_direct	X_direct_UTM31N_	Y_direct_UTM31	ID_inverse	X_inverse_UTM31N	Y_inverse_UTM31N
1	297972.5	4742315.5	1A	298006	4742352	1B	297939	4742279
2	296269.5	4742421	2A	296224	4742407	2B	296315	4742435
3	302581.5	4740666.5	3A	302541	4740687	3B	302622	4740646
4	303472.5	4739946.5	4A	303450	4739986	4B	303495	4739907
5	303692.5	4741387	5A	303698	4741436	5B	303687	4741338
6	303973	4741051	6A	303938	4741086	6B	304008	4741016
7	303752.5	4742333	7A	303744	4742380	7B	303761	4742286
8	310214	4754900.5	8A	310220	4754948	8B	310208	4754853
9	310321.5	4755408.5	9A	310322	4755456	9B	310321	4755361
10	309188.5	4754901	10A	309187	4754948	10B	309190	4754854
11	307247	4755257	11A	307199	4755262	11B	307295	4755252
12	307806.5	4754264.5	12A	307763	4754279	12B	307850	4754250
13	307877.5	4754593	13A	307851	4754631	13B	307904	4754555
14	308755	4754404.5	14A	308741	4754454	14B	308769	4754355
15	304368.5	4742704	15A	304365	4742749	15B	304372	4742659
16	303810.5	4739781.5	16A	303782	4739822	16B	303839	4739741
17	295583	4742794.5	17A	295539	4742810	17B	295627	4742779
18	303469	4741584	18A	303475	4741633	18B	303463	4741535
19	304223	4742594	19A	304230	4742640	19B	304216	4742548
20	304498.5	4741185.5	20A	304463	4741214	20B	304534	4741157
21	295926	4740696	21A	295924	4740741	21B	295928	4740651

Tableau 2 : Mesures MASW réalisées dans la vallée de Luchon. La première colonne donnel'identifiant du profil et la dernière colonne le nom du fichier de données brutes.

Tableau 3 : Mesures de bruit de fond en réseau réalisées dans la vallée de Luchon. La première colonne donne le nom du site, la deuxième colonne donne le nom de la station codé selon le nom du site, le rayon d'ouverture de la mesure et l'identifiant de la station elle-même (site_rayon_station).

Reseau_ID	Station_ID	Date	Lat_WGS84	Long_WGS84	Altitude
1	1-25-102	19-oct-10	42.78563	0.60141	637
1	1-25-103	19-oct-10	42.78580	0.60163	638
1	1-25-104	19-oct-10	42.78562	0.60172	639
1	1-25-105	19-oct-10	42.78546	0.60155	640
1	1-25-106	19-oct-10	42.78546	0.60130	639
1	1-25-107	19-oct-10	42.78563	0.60111	638
1	1-25-108	19-oct-10	42.78581	0.60116	636
1	1-25-109	19-oct-10	42.78590	0.60141	638
1	1-50-102	19-oct-10	42.78562	0.60139	637
1	1-50-103	19-oct-10	42.78593	0.60187	644
1	1-50-104	19-oct-10	42.78555	0.60199	637
1	1-50-105	19-oct-10	42.78524	0.60167	637
1	1-50-106	19-oct-10	42.78526	0.60114	636
1	1-50-107	19-oct-10	42.78553	0.60081	636
1	1-50-108	19-oct-10	42.78592	0.60093	636
1	1-50-109	19-oct-10	42.78604	0.60141	637
2	2-25-102	20-oct-10	42.79862	0.60313	621
2	2-25-103	20-oct-10	42.79868	0.60284	621
2	2-25-104	20-oct-10	42.79882	0.60301	622
2	2-25-105	20-oct-10	42.79881	0.60328	621
2	2-25-106	20-oct-10	42.79869	0.60342	620
2	2-25-107	20-oct-10	42.79846	0.60336	621
2	2-25-108	20-oct-10	42.79838	0.60308	621
2	2-25-109	20-oct-10	42.79849	0.60286	621
2	2-50-102	20-oct-10	42.79863	0.60311	616
2	2-50-103	20-oct-10	42.79875	0.60258	616
2	2-50-104	20-oct-10	42.79904	0.60288	616
2	2-50-105	20-oct-10	42.79901	0.60344	617
2	2-50-106	20-oct-10	42.79870	0.60372	618
2	2-50-107	20-oct-10	42.79833	0.60354	618
2	2-50-108	20-oct-10	42.79819	0.60305	619
2	2-50-109	20-oct-10	42.79836	0.60268	621
3	3-25-102	21-oct-10	42.92341	0.66311	488
3	3-25-103	21-oct-10	42.92364	0.66301	483
3	3-25-104	21-oct-10	42.92365	0.66325	486
3	3-25-105	21-oct-10	42.92348	0.66342	487
3	3-25-106	21-oct-10	42.92329	0.66334	488
3	3-25-107	21-oct-10	42.92322	0.66308	488
3	3-25-108	21-oct-10	42.92333	0.66286	488
3	3-25-109	21-oct-10	42.92353	0.66284	488
3	3-50-102	21-oct-10	42.92340	0.66311	488
3	3-50-103	21-oct-10	42.92387	0.66290	488
3	3-50-104	21-oct-10	42.92381	0.66343	489
3	3-50-105	21-oct-10	42.92347	0.66373	489
3	3-50-106	21-oct-10	42.92311	0.66355	488
3	3-50-107	21-oct-10	42.92300	0.66306	489
3	3-50-108	21-oct-10	42.92320	0.66261	489
3	3-50-109	21-oct-10	42.92359	0.66255	488

ANNEXE 3 Résultats des mesures géophysiques : mesures H/V, profils MASW, bruit de fond réseau

Action M4.2 – Scénarios sismiques

Action M4.2 – Scénarios sismiques

Action M4.2 – Scénarios sismiques

Action M4.2 – Scénarios sismiques

Action M4.2 – Scénarios sismiques

Action M4.2 – Scénarios sismiques

Action M4.2 – Scénarios sismiques

Profils MASW

Action M4.2 - Scénarios sismiques

Profils obtenus par analyse conjointe des mesures MASW et bruit de fond en réseau

Ces figures sont extraites du rapport de master de L. Kingne Massoh (2011). Elles sont données à titre indicative. Toute utilisation de ces données nécessite une relecture de ce rapport qui donne des informations sur les inversions (notamment en termes de contrainte du modèle).

Inversion conjointe MASW et bruit de fond en réseau pour le site 1 (près du stade).

Inversion conjointe MASW et bruit de fond en réseau pour le site 2 (près du golf).

Inversion conjointe MASW et bruit de fond en réseau pour le site 3 (près du lac de Géry).