

Main coontributo

Sis

Systèm

Sis

or: IGC

tema d

me d’In

stema d

Prog

Franc

de Info

nforma

d'Inform

Nea

gramme

ce-Espa

rmació

tion Si

mació

r real t

e opérat

agne-An

ón Sísm

smiqu

Sísmic

time d

ionnel In

dorre 20

SI
mica de

e des P

ca dels

data ex
Ac

2013

nterreg I

007 – 20

SPY
el Pirin

Pyréné

s Pirine

xchan
ction 2

3-04-24

IVA

013

YR
neo

ées

eus

ge
2.2

SISPYR / Interreg IVA

2 Near real time data exchange, 2013.04.24

Authors: Jose Antonio Jara (6), Javier Artero (6), Núria Romeu (6), Xavier Goula (1)

Keywords:

Real time, data exchange

1. IGC, Institut Geològic de Catalunya
2. OMP, Université Paul Sabatier, Observatoire Midi-Pyrénées
3. UPC, Universitat Politècnica de Catalunya
4. IGN, Instituto Geografico Nacional
5. BRGM
6. GEOCAT

© 2013 SISPYR project

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 3

Synopsis

The aim of this action is to provide a service which enables the temporary, sorted
and centralized storage of velocity and accelerometric data in real time from the
stations belonging to different data centres. It’s necessary to develop an API which
allows the request of these data by means of an automatic system for further near
real time processing (e.g.: in case of an event).

This system will grant data centres a shared data pool, and thus the results from
processing the data will be similar without mattering which data centre operates with
it.

Incidentally, this centralized design will free the bandwidth for inter-data centre
communications.

Previous to this writing, research has been conducted to determine the availability
of already developed solutions that would fit the current requirements. These
solutions have been considered under these criteria: open source, free source,
accessible, up-to-date and easily deployable and maintainable.

SISPYR / Interreg IVA

4 Near real time data exchange, 2013.04.24

Contents

1. System requirements ... 7
1.1. Used Terms .. 7
1.2. Measuring units and formatting .. 7
1.3. General description .. 8

1.3.1. Requester Overview .. 9
1.3.2. Provider Overview ... 9

1.4. Restrictions ... 9
1.4.1. Data centre systems .. 9
1.4.2. Input data protocol ... 9
1.4.3. OS and language .. 10
1.4.4. Sub-modules location .. 10

1.5. NRT server modules description .. 10
1.5.1. Requester - Real Time Feed ... 10
1.5.2. Requester - Temporary Repository ... 12
1.5.3. Provider ... 17

1.6. Client .. 20
1.6.1. The Client API ... 20
1.6.2. Sample client ... 21

2. System design ... 23
2.1. General view... 23
2.2. Requester ... 24

2.2.1. Real Time Feed ... 24
2.2.2. Temporary Repository ... 25

2.3. Provider .. 29
2.3.1. Serving thread protocol ... 31

2.4. Database .. 36
2.5. Administration web tool .. 39
2.6. Monitoring web tool .. 41
2.7. The sample client ... 43

3. System test .. 47
3.1. Test scenarios .. 47

3.1.1. Basic scenario ... 47
3.1.2. Full scenario .. 47

3.2. Test cases .. 48
3.2.1. Case 1: Standard error-free environment .. 48
3.2.2. Case 2: Connectivity issues .. 48
3.2.3. Case 3: Storage issues ... 48
3.2.4. Case 4: Stressing .. 49

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 5

4. Operation ... 50

List of illustrations

Figure 1 - Requester's real time scheme .. 12
Figure 2 - Metadata administration web tool GUI ... 15
Figure 3 - Feed data monitoring web tool GUI .. 16
Figure 4 - Temporary repository scheme .. 17
Figure 5 - Provider server role scheme .. 19
Figure 6 - The simplified input/output sausage ... 23
Figure 7 - NRT Server general view ... 24
Figure 8 - An example of Real Time Feed setup .. 25
Figure 9 - Close-up of reliability data storing .. 28
Figure 10 - Close-up of trace data storing .. 29
Figure 11 - Provider data flow ... 30
Figure 12 - Provider functional schema .. 30
Figure 13 - Database tables’ schema ... 36
Figure 14 - Database tables’ relationships ... 36
Figure 15 - NRT Sample client program flow .. 43
Figure 16 - Sample client: graphical example of event-wise interval calculation 45
Figure 17 - Sample client: graphical example of station-wise interval calculation ... 46
Figure 18 - Map of all stations received at the NRT Server, identified by their
owner. The red polygon represents the SISPyr region. .. 50

List of tables

Table 1 - Metadata fields and data types defined for each station 26
Table 2 - Fields of monitoring system ... 28
Table 3 - Fields of stations table containing metadata of each station and part of its
SCNL code ... 37
Table 4 - Components table fields’ description ... 38
Table 5 - Reliability table fields' description .. 39
Table 6 - Available fields of web monitoring tool ... 42
Table 7 - Components information fiels and example of data obtained by monitoring
tool from de database ... 42

SISPYR / Interreg IVA

6 Near real time data exchange, 2013.04.24

Table 8 - Distribution of BB and accelerometric stations received at NRT Server,
from each partner. .. 50

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 7

1. System requirements

1.1. Used Terms

To clarify and avoid misunderstanding some terms will be defined.

The terms “data”, “waveform”, “waveform data”, etc. are referring to seismic and
accelerometric waveform data obtained from seismic and accelerometric stations involved
in SISPyr project.

The terms “repository”, “storage”, “archive”, etc., all refer to a centralized facility where
seismic and accelerometric waveform data obtained from seismic and accelerometric
stations, along with station metadata, which comprises station coordinates, sample rate,
height, etc., are stored under a certain conditions determined by the requirements
exposed in this document.

The term “data centre” refers to all the SISPyr Seismic Data Reception Centres: IGN,
BRGM, OMP, and IGC.

The term “module” is used discretionally when referring to module or sub-module, for the
sake of simplicity.

The terms “feed link” and “data feed” are used to describe a single network connection
transmitting a constant stream of waveform data associated to one or more channels.

The term “wildcard” refers to characters in a string that can be substituted for any other
character or characters. In this module only two wildcards will be used. The question mark
(“?”) can be substituted for any other character, while the asterisk (“*”) can be substituted
for zero or more characters.

1.2. Measuring units and formatting

This section defines which units will be used when dealing with measurable terms that
appear through the document.

Unit for time measurement will be seconds with a decimal resolution up to milliseconds
unless otherwise specified. Items such as latency or time intervals fall into this category.

Dates will be displayed in dd/mm/yyyy format, and stored in seconds passed since
midnight from 01/01/1970, with decimal a resolution up to milliseconds

Any geographical coordinate reference will be dealt in degrees and minutes for latitude
and longitude, either in display or storage.

Distances will be measured in kilometres, with decimal resolution up to meters.

SISPYR / Interreg IVA

8 Near real time data exchange, 2013.04.24

Channels will be fully identified by a SCNL code in N.S.C.L format, where N stands for
network code using up to 8 characters, S for station using up to 6 characters, C for
component using up to 8 characters, and L for location using up to 2 characters.

In this format, an undefined location will take “--" value.

Additional support for SCN code will be implemented to preserve backward compatibility,
using the same format specification as in SCNL.

1.3. General description

In order to grasp a better understanding of the module M2.2, it’s necessary to break down
the whole into smaller self-contained sub-modules. And to define the boundaries of these
sub-modules a closer look must be taken at the data flow and the motivation to develop
this module.

A sample of current data flow for processing can be schematized like this:

- Data centre receives data from RT stations.

- Data centre applies some processing to the received data.

The desired data flow for processing would be represented by these steps:

- Data centre receives data from RT stations.

- Data centre receives data from other suitable stations thanks to SISPyr module
M2.2.

- Data centre applies some processing to the received data.

Data centres gather seismic and accelerometric waveform data from stations through a
variety of communication links. Then these waveforms get stored in real time into their
servers.

If one data centre wants process data in near real time, right now it can only deal with
incoming data from RT stations.

It’s obvious that the more available data, the better precision will be attained at
processing, and to fulfil this availability of data a centralized repository must be present,
where waveforms from stations in the area of interest can be exchanged between data
centres in a near real time environment without overloading communications between
them.

Attention must be paid since an environment where data is shared implies two flows
separated away by concept and time: one to obtain data (Requester), another to serve
and share data (Provider).

Therefore, this architecture effectively splits the module M2.2 in two development blocks
defined by the kind of data flow involved.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 9

1.3.1. Requester Overview

Before data gets stored into a centralized repository, it has to be sent there. This
necessity leads to the definition of first sub-module, which will provide a unidirectional real
time link from data centres to the shared storage, and will be tagged as Real Time Feed
sub-module.

Through this module data centres will send waveforms, received from their stations, in a
constant and reliable stream that will get stored into a centralized repository, represented
by another sub-module named Temporary Repository, which will take care of the storage
and maintenance of any data received through Real Time Feed module.

1.3.2. Provider Overview

Requester will leave the storage facility filled with (near) real time data from stations
contributed by data centres. Provider’s task is to serve stored data to a client on the basis
of a set of parameters, such as time interval and station name filtering.

1.4. Restrictions

1.4.1. Data centre systems

Existing data centre’s data acquisition and processing systems must be taken into
account when developing the solution, as those will determine the kind of input data that
module M2.2 will get.

Most data centres have a SeiscomP Seedlink server, Nanometrics NAQS server or a
Güralp Scream! Server.

Knowing this, the module M2.2 can take advantage of the availability of those services
interfacing to them in order to establish the required data feed.

These servers have known and tried data transfer protocols, while offering the permanent
streaming that this module requires.

By using these existing systems, a seamless and non-intrusive integration of the system
towards the data centres is attainable, since the data input aspect of the module is in fact
already deployed and functional at each data centre.

1.4.2. Input data protocol

Above restriction constraints the protocol employed to transfer waveform data from data
centres to the Requester.

Seedlink, NAQS and Scream will be the data transfer protocols initially supported, but
effort will be made to allow the addition of other protocols in the future.

The transport protocol will be TCP/IP, because of its reliability and error control.

SISPYR / Interreg IVA

10 Near real time data exchange, 2013.04.24

1.4.3. OS and language

Chosen OS for module M2.2 development is Windows XP 32bits, and programming will
be done under Visual C++.

1.4.4. Sub-modules location

Requester (Real Time Feed, Temporary Repository) and Provider will be running on the
same machine, by the same user and under the same privileges.

Clients for the Provider will be a standalone sub-module working in local or remote
environment.

1.5. NRT server modules description

1.5.1. Requester - Real Time Feed

The one and only purpose of this module is to deliver data feeds from the data centres
involved in SISPyr project to the Temporary Repository module.

This single-purpose module should meet the following requirements:

- The module must provide means to establish feed links to data centres.
Through these links, data centres will send the real time seismic and
accelerometric waveforms that this module will redirect, once received, to
Temporary Repository module.

o There will be several protocols to deal with, so a variety of interfaces
must be implemented to support each of them. These interfaces will
communicate with the appropriate data centre’s servers and establish
data stream.

o There should be a permanent stream of data. This involves that gaps
derived from shortages in the streaming (not from the seismic data)
must not occur. In case these become inevitable, there should be a
mechanism to deal and ease the impact of gaps in the feeding and
storage, implemented inside the boundaries of this module.

o To assure the data stream reliability, a mechanism for checking the
connection state must be provided in the form of keep-alive messages
between data centres and the module. This will allow the detection of
network failures and offer a chance to repair them if possible or notify
by means of error logging.

o An optimum bandwidth usage would be desirable. This implies the
usage of a compression algorithm to reduce the size of data sent from
data centres, and consequently a decompressing algorithm applied to
the data before being transferred to the Temporary Repository module.
Balance between bandwidth and processing time must be retained, so
the compression should provide enough benefits in the bandwidth
aspect to compensate the time/processing invested in compressing the
data.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 11

o Rational usage of network resources is required. As data centres will be
providing a service to the Real Time Feed module comprising a range
of channels, it should be considered enforcing data multiplexing. That
is, allowing multiple channels’ data to travel through a single feed for
each data centre.

(Relation 1 feed = n channels)

- A way to configure the behaviour of the module must be provided so it
becomes a scalable solution.

o Ability to create or remove feed links.

o Ability to edit existing feed links’ properties such as associated data
centre and related channels.

o Any setup change should be transparent from data centre’s point of
view.

o Configuration will be done through text files. Those text files will contain
all the configuration parameters in human readable format and will be
stored in sub-module’s local machine.

o Modifying configuration will imply restarting this sub-module for
changes to take effect.

o The sub-module must be prepared to allow the addition of new data
transfer protocols. This means that protocols can’t be hardcoded inside
the module and a plug-in interface must be provided for expandability
and interoperability.

- Should be an errorless module. As this is unattainable, it must be done error-
proof.

o Errors and warnings must be logged in a log file in human readable
format. Some configuration mechanism must be implemented to
choose or modify log file path.

o In case of a fatal or unrecoverable error that causes the module to
crash, some kind of watchdog-type mechanism must be provided to
revive the module. Data feeding module state will be constantly
monitored by this watchdog-type mechanism. Once alive, the module
will try to re-establish the ongoing feeds when crash took place. This
process should be unattended and completely automatic.

SISPYR / Interreg IVA

12 Near real time data exchange, 2013.04.24

Real Time Feed

SeedLink Interface

NAQS Interface

SeedLink Interface

SeedLink Interface

Scream! Interface

Datacenter #1

Datacenter #2

Datacenter #3

SeedLink Server

NAQS Server

SeedLink Server

Scream! Server

SeedLink Server

To
Temporary
Repository

Real time data

Compressed data

Uncompressed data

Real Time Feed Input/Output scheme

Figure 1 - Requester's real time scheme

1.5.2. Requester - Temporary Repository

All data received by Real Time Feed module must get saved somewhere. That’s why a
Temporary Repository module must be defined by means of a set of requirements:

- This sub-module must store the data from Real Time Feed, so it requires
repository system.

o It will use the chosen OS’ file system. Being Windows XP 32bits, NTFS
will be used rather than FAT32, to get rid of file size limitations.

o One file will be assigned per channel. This will mean a more accessible
searching and maintenance.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 13

 Files will be named after the associated channel in SCNL
format.

 The “near real time” nature of the project negates the need of
storing the full time wide waveform, therefore only a section of
gapless data will be included into the file.

The length of this section will be configurable, with a default
value corresponding to 1 day of gapless data. This data interval
will be the same for all channels/files.

 The file will behave like a circular buffer, where older data gets
overwritten by newer incoming data. Some mechanism must be
provided to manage these overwriting operations properly.

 The files will be accessible directly by the Provider. Storing the
data by means of NTFS file system implicitly allows this.

o Waveforms received from Real Time Feed will arrive and be stored in
uncompressed raw format, for the sake of access speed in spite of
storage space availability.

- Must support the Real Time Feed feeding from different and simultaneous
sources and, at the same time, serving to the Provider different and
simultaneous data requests. This implies a strong control of concurrent access
to the stored resources.

o A list of channel properties (metadata), such as their geographical
coordinates, will be maintained in the Temporary Repository. It will be
stored in a database that allows easy updating and maintenance, and
independent access from waveform data.

- Must be an error-proof module

o Errors and warnings must be logged into a log file in human readable
format. Some configuration mechanism must be implemented to choose
or modify log file path. This path will be restricted to the local machine
running the module.

o In case of a fatal or unrecoverable error that causes the module to
crash, some kind of watchdog-type mechanism must be provided to
revive the module. Once alive, it will try to re-establish the
communication with Real Time Feed module. This process should be
unattended and completely automatic.

o Any storage system, upon suffering an error, might be prone to data
corruption. Recovering from corruption is a bothersome task, so some
kind of prevention must be implemented in the form of redundancy in
file operations and file integrity checking. It will allow an easier
recovering if any file gets corrupted, since an up-to-date copy will be
present.

- A way to configure the behaviour of the module must be provided so it
becomes a scalable solution.

SISPYR / Interreg IVA

14 Near real time data exchange, 2013.04.24

o Ability to create or remove files linked to specific channels. (Relation
1 file = 1 channel)

o Ability to change the time interval limitation for the files. Doing this will
lead to the creation of a new set of files, destroying any old files and
consequently their contained data.

o Ability to choose the behaviour in case of an error that can’t be
automatically repaired: Stopping the module or ignore and continue.

o Any change in the properties from an incoming channel data (e.g.:
sample rate) will imply the creation of a new file for that channel,
destroying the old channel file and its data. This will assure consistency
on stored data.

o The implementation of a file corruption preventing system (as
mentioned in the “error-proof” section above) negates the ability to
change already created file paths freely. Doing that, will imply the
creation of new files.

o Configuration will be done through text files. Those text files will contain
all the configuration parameters in human readable format and will be
stored in sub-module’s local machine.

o Modifying configuration will imply restarting this sub-module for
changes to take effect. Additionally, depending on the modified
parameters it might imply recreating the files affected by the changes
and losing the old data.

- An admin tool should be implemented to manage station’s metadata database.
This admin tool will be based on a web interface and tested over IE7, IE8,
Firefox 3 and Mozilla.

o Will allow adding, editing and deleting channels and its properties, by
means of a web form. The following properties will be stored:

 SCNL code

 Latitude & longitude

 Elevation (measured in meters)

 Dip and azimuth (measured in degrees)

 Sample rate (measured in Hz)

 Owner

 Sensitivity in 1 Hz (counts / measuring units)

o Preliminary layout:

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 15

Figure 2 - Metadata administration web tool GUI

o Access to the tool will be password protected. Once logged in, password
will be editable.

o Administrator will be the responsible of maintaining synchronization
between channels in the list and active feeding channels.

- A monitoring tool will be developed to check active feeds state. This monitoring
tool will be based on a web interface and tested over IE7, IE8, Firefox 3 and
Mozilla.

o In order to allow data health monitoring a database will store incoming
packets’ latency along with any other properties that are suitable for the
aforementioned monitoring. This database will be synchronized
automatically with the stored waveform data so it only retains latency for
existing data.

o The tool must show real time information in a line for each channel
configured in the feed links.

 Channel code (SCNL) String(s) showing SCNL code of the
channel.

 Latency Display of average latency, average latency standard
deviation, and latency from the last received packet, showing the
seconds with decimal resolution of milliseconds, and a color code
depending on the value: Green for values under 10s, Yellow
between 10s and 60s, Orange between 60s and 300s, and Red
over 300s. Latency is defined as the difference of incoming packets’
timestamp and system local time. This time ranges are default
values that will be configurable.

 Data interval Two fields, showing date of first and last available
packets in dd/mm/yyyy format.

 Graphical feedback about stored data for this channel in Temporary
Repository, showing a bar with green areas for available data and
red areas corresponding to gaps.

 The list will be ordered by stations alphabetically and descending.

 Preliminary layout:

SISPYR / Interreg IVA

16 Near real time data exchange, 2013.04.24

Figure 3 - Feed data monitoring web tool GUI

o Interaction with this monitoring tool will be reduced to read-only operation.
It won’t be used to alter in any way the feeds or their configuration.

o The webpage will refresh automatically the information every X seconds,
being X a configurable value.

o To provide some flexibility a server-side configuration will be available
covering the following parameters:

 Ranges of latency. There will be four ranges to configure,
corresponding to green, yellow, orange and red display colours.
Values will be in integer seconds.

 Page refresh timer. A value in seconds indicating when the page
will refresh with new information.

 Channel filtering. Will allow specifying a list of stations, with the
optional use of wildcards, which are allowed to be displayed.
Channel codes will be SCNL.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 17

Figure 4 - Temporary repository scheme

1.5.3. Provider

Remote access by clients to stored data by Temporary Repository module will be granted
through Provider module.

The following requirements define the Provider server role:

- Being a server, it must be able to provide a number of services to clients.

o Main service will consist in attending a request from a client, formed
by a set of parameters (channel code in SCNL format and a time
interval) and returning to the client the data from the Temporary
Repository that corresponds to the parameters.

o Additional services will be implemented:

 A service to provide a list with available channels stored in
Temporary Repository.

 A service to provide an expanded list with available
channels and time intervals from the Temporary Repository.

SISPYR / Interreg IVA

18 Near real time data exchange, 2013.04.24

 A service to provide the list of channels with associated
metadata.

o Services will be synchronous: A service will receive a request, issue
a reply and then process next request.

o After establishing the connection with a client, the Provider will
spawn the appropriate service to deal with requests sent by the
client.

o To support simultaneous client requests, any number of Provider
service threads will be launched to satisfy the demand. This will be
automated and completely transparent from a client-side point of
view.

(Relation 1 Provider = n Service threads = n Clients)

- Upon request, has to obtain low latency access to the data

o Validation of parameters defining the requests will be a server-side
task. This means that the clients might implement a validation
mechanism, but server will be the final responsible of asserting
them, informing the client if there’s any incompatibility towards the
data stored.

o This module must cooperate with the Temporary Repository module
to control the concurrent access to stored data. Access to the
requested data will be granted based on a first-to-arrive first-to-be-
served policy, in order to accomplish the concurrent access needs.
This will happen anytime there are overlapping requests on the
same data.

o Since data will be stored in files named after the SCNL format,
finding the requested channel will be a trivial task. The main
delaying factor will be isolating the data section that fit the specified
time interval, so some kind of indexing system will have to be
implemented to ease the lookup process.

- Once data has been retrieved, it must be sent to client.

o Continuous streaming to the remote clients won’t be allowed since it
defeats the purpose of this module.

o To achieve the desired fast servicing on the bandwidth aspect, a
layer of compression will be applied. So requested data will be
retrieved in raw uncompressed format from Temporary Repository,
compressed, and then sent to the client.

o Data will be sent sequentially, each sequence being one full interval
of channel data. So if a client requests data intervals from 4
channels, it will receive 4 “blocks” of data sequentially. Therefore,
no multiplexing will be applied to the transfer.

- A way to configure the behaviour of the module must be provided.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 19

o Ability to configure the network parameters that define a server,
such as listening port and timeout values for potentially dead
connections.

o Ability to point the location of the Temporary Repository data so
direct access can be accomplished from this sub-module.

- Must be an error-proof module.

o Errors and warnings must be logged in a log file in human readable
format. Some configuration mechanism must be implemented to
choose or modify log file path.

o In case of a fatal or unrecoverable error that causes the module to
crash, some kind of watchdog-type mechanism must be provided to
revive the module. This process should be unattended and
completely automatic. If possible, once the module is up and
running again, a notification will be sent to clients connected at the
time of the shutdown so they can resume data transferring.

o A mechanism to inform from server errors to a connected client
must be implemented. Any request that cannot be accomplished will
return and error message to the client so it can notify the user.

o A mechanism to prevent overloading the server by connections or
excessive processing must be implemented.

Provider

Direct data access

Compressed data

Uncompressed data

Provider Input/Output scheme

Compression algorithm

Request’s parameters
validation

Client data request

From Client

To ClientFrom
Temporary
Repository

To
Temporary
Repository

 Figure 5 - Provider server role scheme

SISPYR / Interreg IVA

20 Near real time data exchange, 2013.04.24

1.6. Client

An API will be provided to aid in the development of custom clients to fulfill the diverse
necessities that might arise from data centres.

Nevertheless, a sample client will be created as an example of API usage and
possibilities.

1.6.1. The Client API

This API must meet the following requirements:

- Must be usable in 32bits versions of Windows and Linux.

- Should encapsulate all the required functionality to interact with the Provider

o Basic client-server functions:

 A method to connect to a remote Provider, specifying server’s IP
address and port. This will establish the connection and leave it
open, ready to send requests.

 A method to drop the connection in a graceful manner, so the
server can free allocated resources.

o Methods for sending requests to the server:

 A method that will allow requesting the list of currently available
channels along their time intervals from the Temporary
Repository.

 A method that will allow requesting data from a particular
channel and time interval.

• Prior to requesting data, it will be necessary to ask for
the channel list if not done before. Even if the list was
already requested in a previous operation, it will be
advised to request the list before sending any new data
request due to the data constant update.

• Parameters for data requesting will be the channel code
in format SCNL, a time interval and a timeout for the
operation.

• Server will check channel and time interval availability,
but client will also implement a preliminary validation.
This will be attained doing a lookup trying to match
request’s parameters versus the obtained list of current
channels and time intervals before sending a data
request.

 A method that will allow requesting the list of stations along with
their metadata.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 21

o Must be prepared to receive responses to the sent requests.

 All requesting methods will be synchronous. This means that
after sending a request, the method will wait till it gets the
requested object (a list or a chunk of data) or a configurable
timeout expires.

 Requested data might arrive in compressed format, so a
decompression shall be applied before any further processing is
done. Once uncompressed, waveform will be in raw format.

- All requesting methods must return the result of their execution.

o Will be either and OK response, an error or in some cases a warning.

o It will be up to the client implementation to show a feedback to the user
and deal with the error or warning.

o Internally, requesting methods might get an error response from the
server. This should be delivered in a separated way from the client-side
errors, since both error types could occur in a single method call.

- A set of utility methods will be also implemented:

o A wildcard channel filtering method. Will accept an input string with
filtering wildcards and return a list of channels that match the filter.

o A coordinate-distance channel filtering method. Will accept an input
geographical location and distance and return a list of channels inside
the area defined by the circumference with centre at given coordinates
and radius equal to the distance.

o A rectangular area channel filtering method. Will accept two input
geographical locations and return a list of channels inside the rectangle
defined by the two coordinates.

o An exporting method. Will convert and save the raw data received from
the Temporary Repository to mini-seed format.

- Full documentation for the API will be delivered, along with code snippets showing
how to properly use the methods.

1.6.2. Sample client

The sample client will show how to make use of the API. This implementation will accept
an event location (latitude and longitude in degrees plus depth in meters) and event origin
time (year, month, day, hour, minute and seconds) as a command line parameter, so the
client application can request relevant channel trace data related to that event, which will
be gathered and dumped to mini-seeds.

Client workflow can be described as follows:

- Once an event has been given through command line, the client will ask the NRT
server for a list of available channels in the Temporary Repository.

SISPYR / Interreg IVA

22 Near real time data exchange, 2013.04.24

- A configurable channel filter will be applied to the received list leaving only those
channels that match the filtering.

- Having the filtered channel list, event location coordinates, and a configurable
distance, client will call the utility method that finds stations that lay inside the
circumference defined by geographical coordinates and distance.

- Having the stations, a time interval is required before asking for the data. Two
choices will be given to calculate this interval:

• Event-wise interval, to obtain full range set of data:

o Base time will be the origin time from the event.

o Pre-event and post-event times will be configurable values that will
be subtracted and added respectively to the event’s origin time to
obtain a time interval.

o Calculated interval will be used in the data request for all channels.

• Station-wise interval, to obtain only relevant set of data:

o Based on a basic crustal model, and having event origin time and
geographical coordinates, along with stations coordinates, wave
arrival times to each station will be calculated.

o Pre-event and post-event times will be configurable values that will
be subtracted and added respectively to each station wave arrival
time to obtain an individual interval.

o Calculated interval will be used in the data request for each
channel.

- Then the client will ask the NRT server for the data of the channels returned by the
filtering method with the time intervals calculated in the previous point.

- Received data, in raw format, will be converted to mini-seed format and dumped to
several mini-seed files, one for each channel.

• A log file will be updated with information about processed events and mini-
seeds created. Any error found during the process will be logged too.
Additionally, the logging will be shown in the application console.

• Configuration will be done through text file. These are the main client
parameters:

o Distance (radius in km.) that will be used when calculating stations
inside a defined circular area.

o Pre-event and post-event time modifiers to be used in calculation of
channel’s data time intervals.

o Mini-seed naming convention and storage path. Will be restricted to
local machine.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 23

o NRT server address and connection parameters.

o Log file path.

o Channel filtering using wildcards that will restrict channels used by
this client.

2. System design

2.1. General view

The NRT Server has been split into two main development blocks:

- Provider module

- Requester module

The simplest view of this structure is an input-output sausage, as pictured in Figure 6.
Actually it’s a streaming-input/output-on-request, but this topic will be covered in the in-
depth descriptions for each module. For now, let’s keep the input-output sausage
simplification.

Figure 6 - The simplified input/output sausage

A review of existing seismic-oriented input/output systems led to the conclusion of
taking advantage of the Earthworm model. Being an open-source solution it allows full
customization and expandability to fit the needs of NRT Server, and provides a base
environment that mirrors most of the requirements.

For the sake of features availability, Earthworm’s version 7 onwards will be used, and
through the course of this document Earthworm’s modules will be added to conform to
the full NRT Server requirements.

Below, the Figure 7 offers a panoramic view of the assembled module, its interactions
with the data centres and users, a preview of the inner modules, along with the
boundaries of the different sub-modules domains. Keep in mind that the user can be
placed everywhere, so a client could be placed in a data centre or inside the Provider
area.

SISPYR / Interreg IVA

24 Near real time data exchange, 2013.04.24

Figure 7 - NRT Server general view

2.2. Requester

Obtaining and storing data is the main purpose of this development block. Data needs to
travel from selected data centres to be gathered in a centralized repository, so two tasks
must be accomplished.

2.2.1. Real Time Feed

Each data centre has raw seismic data stored that must be outputted to NRT Server. Most
data centres have streaming trace data output systems implemented, such as Seedlink,
NAQS or Scream! Servers, so the NRT Server just must take care of establishing a link to
these servers in order to receive the stream of data.

Knowing that Earthworm is the base for the NRT Server, some of its available modules
can be used in order to get the data input in the system. Earthworm modularity allows
expanding the data input diversity, but only those trace data output systems enumerated
above will be initially supported.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 25

- Seedlink support

To establish the link to the Seedlink (v2.6) servers the module slink2ew
(v2.0) will be used.

- NAQS support

To establish the link to the NAQS servers the module naqs2ew (v1.5) will
be used.

- Scream! support

To establish the link to the Scream! (v4.4) servers the module scream2ew
(v1.2) will be used.

For each available server an instance of the proper module must be created and linked.
Once the needed modules are up and running, a stream of data will begin to flow to the
system and the Real Time Feed will be enabled. An example of this situation can be seen
at Figure 8 below.

Figure 8 - An example of Real Time Feed setup

Data centres will transfer data to their Seedlink, NAQS or Scream! Servers, which will
feed the slink2ew, naqs2ew and scream2ew modules, which will dump received data to
the assigned Earthworm ring. Trace data traversing the Earthworm ring will do so in
Earthworm’s TRACEBUF2 packet format.

As long as this data feeds aren’t stored they will be lost, and here’s where the Temporary
Repository is needed.

2.2.2. Temporary Repository

Once the trace data has been dumped into the Earthworm ring, it must be stored before
it’s lost. Earthworm offers a module, wave_serverV, designed to save trace data in files
(called wave tanks) separated by the source channel, and serve them through TCP/IP
links.

SISPYR / Interreg IVA

26 Near real time data exchange, 2013.04.24

Besides trace data, there’s other data that have to be saved: Data reliability and
station/component metadata.
Natively, the wave_serverV module only supports storing and serving of trace data, so a
customized version will be developed to fit our needs: the Repository Manager, and in
order to store metadata and reliability data, a relational Oracle 9.2g database will be set
up with full access from Repository Manager, by using the OCCI database API for read
and write operations.

• Station and component metadata

Having station and component metadata available will be needed for data
interpretation and processing, and Repository Manager will ignore any feed that hasn’t
associated metadata and will discard incoming trace data from it.
Metadata, though, isn’t bundled in the packets received from the data centres, so it will
have to be entered manually from the Administration tool (section 2.5) and will be
stored in different Oracle database tables for station and component, namely the
Stations table and Components table. This effectively gives the Administration tool
control over which feeds are available to the users just by adding or removing the
metadata register for established feeding channels.

To enable a feed, two kinds of metadata are needed:

- Station metadata, which encompasses those fields that describe the station.

- Component metadata, which defines individuality of the components from a
station.

Data definition:

 FIELD TYPE

S
ta

tio
n

Station String
Network String
Latitude Real
Longitude Real
Elevation Real
Owner String

C
om

po
ne

nt

Component String
Location String
Dip Real
Azimuth Real
Sample rate Real
Sensitivity at 1Hz Real

Table 1 - Metadata fields and data types defined for each station

Data insertion:

- An authorized user will create a register for a new station and fill up its metadata
using the Administration tool.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 27

- Once the station metadata is inserted, the user will create as many components
(and their metadata) as needed. If a station has no components it will be ignored
when receiving data from it.

- The Administration tool will take care of any database operations needed to
register the data.

Data edition/deletion:

- The Administration tool will allow editing or deleting existing station and component
records.

- Being stored in a relational database, all components owned by a station should be
deleted before removing the owning station.

Image 1: Close-up of metadata storing

• Data reliability

With a remote streaming setup like the one needed in NRT Server, some means to
check the state of these feed links must be implemented. A set of data that represents
the reliability of the feeds will be continuously updated and will be reviewable by
means of a Monitoring tool (section 2.6).

The healthiness of a feed link can be measured in three ways:

- Current latency, defined as the time elapsed between last received packet’s data
ending timestamp and entrance time of the packet into the Repository Manager.
Storing this latency in real time from several channels simultaneously is too
stressful for the database, so an optimistic approach will be applied, updating this
value periodically.

- Average latency, being the average of all stored packet’s latencies. Having an
average value implies storing the variance and any other values needed for
computing an average accumulation.

- Gaps in the received data. Keep in mind that trace gaps can be caused by a
faulty connection between stations and data centres or between data centres and
NRT Server. An excessive I/O stress on the Repository Manager can also create
gaps.

SISPYR / Interreg IVA

28 Near real time data exchange, 2013.04.24

This information must be synchronized to the available trace data. That means that the
saved average latency and gap control will correspond only to trace data currently
saved in the disk, and as soon as the information regarding a channel becomes
obsolete it will be discarded.

Data definition:

FIELD TYPE
Current latency Real
Average latency Real
Latency standard deviation Real
Trace starting time Real
Trace ending time Real
Table 2 - Fields of monitoring system

Data insertion:

The Repository Manager will take care of inserting and updating the data reliability
information in an automated process.

Data edition/deletion:

Data maintenance will be automated. The Repository Manager will monitor the data,
and periodically will erase or update the existing registers that are out of synch with
the data stored in the circular filebuffers.

Temporary Storage

Earthworm Ring

startstop

statmgr

Repository
Manager

ORACLE DB

Reliability data

To Monitoring tool

Figure 9 - Close-up of reliability data storing

• Trace Data

This is essentially the data received through the Earthworm modules that capture the
streaming from the Data centres.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 29

The Repository Manager stores that data in one file per channel, that behave as
circular buffers, overwriting data older than a configurable “age”, by default 24 hours.
Keep in mind that this “age” is measured discarding the time occupied by gaps
between data.

Data insertion:

When a packet from an established feed gets into the Earthworm ring, the Repository
Manager catches and inserts it into the corresponding file.
As pointed in 2.1.2.1, only packets from existing channels in the Component & station
metadata tables will be inserted.

Data edition/deletion:

Trace data can’t be edited or selectively deleted. Old data will get overwritten by the
Repository Manager automatically when old enough.

Figure 10 - Close-up of trace data storing

2.3. Provider

Having data in a storage facility implies offering means for accessing it. This is the
Provider’s task.

The Repository Manager (described in section 2.2.2) will also be part of the Provider,
since it will include a protocol to transfer trace data over a TCP/IP socket with a
synchronous (blocking) behaviour. For every client that establishes a connection, the
Provider will ask Repository Manager to spawn a serving process so it is able to respond
simultaneous data requests from different clients.

The following services upon request are implemented:

- Returning a list of available channels, the time intervals of their data and their
metadata. The list will include only channels with metadata in the Stations table and
Components table.

SISPYR / Interreg IVA

30 Near real time data exchange, 2013.04.24

- Returning a set of data restricted to a requested time interval for one or more
channels, and streamed from the circular file buffers assigned to the requested
channels.

Latency data doesn’t need to be transferred since it’s only used it to provide
monitoring information, and will be accessed directly by the Monitoring tool.

To attain the maximum performance in terms of bandwidth, the Provider might add a
layer of compression previous to sending the data via TCP/IP.

Figure 11 - Provider data flow

Figure 12 - Provider functional schema

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 31

2.3.1. Serving thread protocol

Keep in mind that this protocol won’t be directly accessible from the clients since the
Client API wrapper will hide it.

All requests and responses will be built by a header, and depending on the type of
message, a body. The header will be common to all messages, containing a 4 byte
signature (0x564F4944) in order to validate the message, a 4 byte code identifying the
message type and the expected size in bytes of the body.

After each server response, a Ready message will be sent to confirm the server readiness
to receive further requests, except for connection and disconnection messages.

The trace data server-client transferring will be the most bandwidth consuming. Because
of this, the possibility of applying a compression layer to the data will be provided.
Several compression methods will be implemented (zip, FLAC and differential) and
derived from benchmarking one or more will be retained in the final release version.

• Managing connection

- Connecting

Since there’s no user authentication, the initial connection will be established by
opening a socket between client and server. Once the socket link is up, the server
will wait for client protocol acknowledgement header.

Connection Header
Bytes Description
4 (int) 0x564F4944
4 (int) 0x434F4E4E
4 (int) 0

When the server receives this header, it will be bounced back to the client to notify
that connection was granted and it’s ready to give response to client requests

- Disconnecting

Before closing the socket, the client should send a Disconnection header to allow
the server to close the server-side connection gracefully.

Disconnection Header
Bytes Description
4 (int) 0x564F4944
4 (int) 0x44495343
4 (int) 0

• Client requests

- Straight Channel list

Ask the server for a list of channels with available data in the server

SISPYR / Interreg IVA

32 Near real time data exchange, 2013.04.24

Header
Bytes Description
4 (int) 0x564F4944
4 (int) 0x4C535449
4 (int) 0

- Metadata Channel list

Ask the server for a list of channels along their metadata

Header
Bytes Description
4 (int) 0x564F4944
4 (int) 0x4D455449
4 (int) 0

- Channel data

Ask the server for a single/multiple channel range of data

Header
Bytes Description
4 (int) 0x564F4944
4 (int) 0x44415449
4 (int) 8 + 20*N

Body
Bytes Description
4 (int) Channel count
4 (int) Maximum packet data size
1 (char) Compression flag
20 (struct) Channel data request #1
... ...
20 (struct) Channel data request #N

 Channel Data Request structure

Bytes Description
4 (int) Channel ID
8 (double) Start Time
8 (double) End Time

 The channel ID will be one of those contained in the response to a Channel list

request.
 Channel count will point how many channel info structures are present in the

body.
 Max. packet data size will determine the Data field size limit in the response

packets
 Compression flag: If enabled, requested data will be in compressed format. (0

= Uncompressed / n = Compression type)
 Starting and ending time will be in “seconds passed since 01/01/1970” format.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 33

• Server responses

- Ready message

Server is ready for dealing with the next request

Header
Bytes Description
4 (int) 0x564F4944
4 (int) 0x00524459
4 (int) 0

- Error message

Server encountered an error while processing the current request

Header
Bytes Description
4 (int) 0x564F4944
4 (int) 0x00455252
4 (int) 8

Body
Bytes Description
4 (int) Last message type
4 (int) Error code

 The Last message type will hold the sent message type value that generated

the error

- Straight Channel list

Return a list of available channels.

Header
Bytes Description
4 (int) 0x564F4944
4 (int) 0x4C53544F
4 (int) 4 + 48*N

Body
Bytes Description
4 (int) Channel count
48 (struct) Channel Info #1
... ...
48 (struct) Channel Info #N

 Channel count will point how many channel structures are present in the body.

 Straight Channel Info structure

SISPYR / Interreg IVA

34 Near real time data exchange, 2013.04.24

Bytes Description
4 (int) Channel ID
7 (NULL-terminated string) Station
9 (NULL-terminated string) Net
9 (NULL-terminated string) Component
3 (NULL-terminated string) Location
8 (double) Start Time
8 (double) End Time

 The channel ID will one assigned by the Repository Manager
 Starting and ending time will be in “seconds passed since 01/01/1970” format.

- Metadata Channel list

Return a list of available channels along their metadata

Head
Bytes Description
4 (int) 0x564F4944
4 (int) 0x4D45544F
4 (int) 4 + 113*N

Body
Bytes Description
4 (int) Channel count
113 (struct) Channel Meta #1
... ...
113 (struct) Channel Meta #N

 Metadata Channel Info structure

Bytes Description
4 (int) Channel ID
7 (NULL-terminated string) Station
9 (NULL-terminated string) Net
9 (NULL-terminated string) Component
3 (NULL-terminated string) Location
8 (double) Start Time
8 (double) End Time
8 (double) Latitude
8 (double) Longitude
8 (double) Elevation
9 (NULL-terminated string) Owner
8 (double) Dip
8 (double) Azimuth
8 (double) Sample Rate
8 (double) Sensitivity

- Uncompressed Channel data

Head

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 35

Bytes Description
4 (int) 0x564F4944
4 (int) 0x4441554F
4 (int) 32 + N

Body
Bytes Description
32+N (struct) Channel Data

 Channel Data struct
Bytes Description
4 (short) Channel ID
8 (double) Start Time
8 (double) End Time
8 (double) Sample Rate
4 (int) Number of samples
N (data) Data

 The channel ID will one assigned by the Repository Manager
 Starting and ending time will be in “seconds passed since 01/01/1970” format.

- Compressed Channel data

Head
Bytes Description
4 (int) 0x564F4944
4 (int) 0x4441434F
4 (int) N

Body
Bytes Description
N (data) Compressed Data

Receiving channel data:

Once a data request is processed by the server, it will begin sending Channel Data
responses to the client. In a multi-channel data request the server will send the data for
each channel sequentially, in the order pointed by the client in the data request message.

The Data member of the Channel Data structure in each response will be filled until any of
these criteria is met:

- A trace data gap is found
- Data size limit specified by the client in its request is reached
- There’s a change in the data sample rate
- There’s no more data for current channel

Every time one of these events happens and there are data left to be sent, a new Channel
Data response will be generated following the same rules.

SISPYR / Interreg IVA

36 Near real time data exchange, 2013.04.24

Only when all the required data from all the requested channels has been sent, the Ready
message will be transmitted to the client and the data transfer will be considered
concluded.

Received waveform data will be in raw format, with a resolution of 32bits per sample.

2.4. Database

- Database schema

Figure 13 - Database tables’ schema

- Relationship between the tables

Stations 1 n Components
Components 1 n Reliability
Figure 14 - Database tables’ relationships

- Primary keys

All primary keys will have auto incremental values. In Oracle there aren’t auto
fields, so a SEQUENCE database object will be used for each primary key in order
to generate unique values.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 37

Every time a new register is inserted, a new primary key will be generated with the
Oracle/SQL sentence “… Sequence_name.NextVal() …”

Stations table

This table will contain the fields describing the metadata of a station and part of its
SCNL code. Each inserted register represents a station.

Field Type Required Details

ID_Station NUMBER(13) Yes Primary key

Station VARCHAR2(7) Yes The S on SCNL

Network VARCHAR2(9) Yes The N on SCNL

Latitude NUMBER(10,6) No Station’s latitude for its geographical location, stored in degrees

Longitude NUMBER(10,6) No Station’s longitude for its geographical location, stored in degrees

Elevation NUMBER(7,2) No Station’s elevation above sea level, stored in meters

Owner VARCHAR2(16) No String identifying the station’s owner

Table 3 - Fields of stations table containing metadata of each station and part of its SCNL
code

Constraints

Station and Network fields are paired to form a unique constraint which defines stations’ individuality, so
no duplicate pairs will be allowed.

Oracle DDL sentences
CREATE SEQUENCE Seq_ID_Station INCREMENT BY 1 START WITH 1;

CREATE TABLE Stations (ID_Station NUMBER (13),
 Station VARCHAR2 (7) NOT NULL,
 Network VARCHAR2 (9) NOT NULL,
 Latitude NUMBER (10,6),
 Longitude NUMBER (10,6),
 Elevation NUMBER (7,2),
 Owner VARCHAR2 (16)
);

ALTER TABLE Stations ADD CONSTRAINT PK_Station PRIMARY KEY (ID_Station);

ALTER TABLE Stations ADD CONSTRAINT UK_Station UNIQUE (Station, Network);

Components table

Registered components from existing stations will be stored in this table.
Each inserted register represents a station’s component.

SISPYR / Interreg IVA

38 Near real time data exchange, 2013.04.24

Field Type Required Details

ID_Component NUMBER(13) Yes Primary key

ID_Station NUMBER(13) Yes Foreign key to Stations table

Component VARCHAR2(9) Yes The C on SCNL

Location VARCHAR2(3) No The L on SCNL

Dip NUMBER(4,1) No Component’s inclination measured in degrees

Azimuth NUMBER(4,1) No Component’s azimuth measured in degrees

SampleRate NUMBER(4,1) No Component’s frequency measured in Hz

Sensitivity NUMBER(7,2) No Component’s sensitivity in counts per measuring unit at 1
Hz

Latency NUMBER(6,6) No Component’s most current data transmission latency
measured in seconds

Table 4 - Components table fields’ description

Constraints

Component and Location fields are paired to form a UNIQUE constraint which defines components’
individuality (along with the foreign key), so no duplicate pairs will be allowed.

Oracle DDL sentences
CREATE SEQUENCE Seq_ID_Component INCREMENT BY 1 START WITH 1;

CREATE TABLE Components (ID_Component NUMBER (13),
 ID_Station NUMBER (13) NOT NULL,
 Component VARCHAR2 (9) NOT NULL,
 Location VARCHAR2 (3),
 Dip NUMBER (4,1),
 Azimuth NUMBER (4,1),
 SampleRate NUMBER (4,1),
 Sensitivity NUMBER (7,2),
 Latency NUMBER (10,6)
);

ALTER TABLE Components ADD CONSTRAINT PK_Component PRIMARY KEY (ID_Component);

ALTER TABLE Components ADD CONSTRAINT FK_Component FOREIGN KEY (ID_Station)
REFERENCES Stations (ID_Station);

ALTER TABLE Components ADD CONSTRAINT UK_Component UNIQUE (Component, Location,
ID_Station);

Reliability table

Here will be saved the information regarding component’s stored data reliability. Each
inserted register represents an uninterrupted component’s trace data sequence.

Ideally, there should be a unique register for each unique component, as that would
mean the feed has been constant and gapless.

On the other hand, the presence of several registers corresponding to one unique
component implies the existence of gaps, being the number of gaps equal to the

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 39

number of registers minus one. The absolute difference between the ending time from
register A and the starting time from register B (where B is the register that follows in
time to A) will give the gap time length.

Field Type Required Details

ID_Reliability NUMBER(13) Yes Primary key

ID_Component NUMBER(13) Yes Foreign key to Components table

TimeStart NUMBER(14,4) No Data sequence starting time, stored in seconds since 00:00
01/01/1970

TimeEnd NUMBER(14,4) No Data sequence starting time, stored in seconds since 00:00
01/01/1970

LatencyAvg NUMBER(6,6) No Computed average latency from the packets which built the
sequence

LatencyVar NUMBER(6,6) No Variance from the latency average

Table 5 - Reliability table fields' description

Oracle DDL sentences
CREATE SEQUENCE Seq_ID_Reliability INCREMENT BY 1 START WITH 1;

CREATE TABLE Reliability (ID_Reliability NUMBER (13),
 ID_Component NUMBER (13) NOT NULL,
 TimeStart NUMBER (14,4),
 TimeEnd NUMBER (14,4),
 LatencyAvg NUMBER (6,6),
 LatencyVar NUMBER (6,6)
);

ALTER TABLE Reliability ADD CONSTRAINT PK_Reliability PRIMARY KEY (ID_Reliability);

ALTER TABLE Reliability ADD CONSTRAINT FK_Reliability FOREIGN KEY (ID_Component)
REFERENCES Components (ID_Component);

2.5. Administration web tool

- Authentication

Being a tool designed to modify the database contents, a security layer will be applied.
Login and password will be required before further interaction can be achieved.
Implementation of authentication will be the one imposed by the chosen web server:
Apache2.

- Interface

Once the user has been authorized by entering a valid login and password, a table
containing the list of already inserted stations and their metadata will be displayed,
ordered alphabetically by station code.

- Interaction: Adding a station

User will be able to insert a new station. She must provide input for all the required
fields present in Table 3.

SISPYR / Interreg IVA

40 Near real time data exchange, 2013.04.24

When submitting the filled fields a client-side validation process will be triggered:

- Floating point conversion. The decimal separator character will be a decimal point.

- All fields will be checked to verify conformance with the expected types.

- Validate database constraints: The fields Station and Network pair from the new
station mustn’t be present in the database.

After successful validation, the web server will establish a connection to the database and
will insert the new station along its metadata into the stations table. Once committed, the
web page will refresh showing the list with the newly included station.

- Interaction: Editing a station

User will be able to edit an existing station. Editing will be restricted to non-constrained
fields:

• Latitude
• Longitude
• Elevation
• Owner

If the user wants to edit the constrained fields (Station and Network) she will have to
follow a “manual” process: Deleting current register and creating a new register with
the Station and Network desired values along the metadata.

Validation will occur like described in “Adding a station” section. After successful
validation, the web server will establish a connection to the database and will update
the station along its metadata into the Stations table.

The web page will refresh showing the list with the newly included station.

- Interaction: Deleting a station

User will be able to delete an existing station.
A confirmation message will be displayed before permanent deletion is completed.

Deleting a station will operate in cascade mode, removing any associated
components. This is done to keep the consistency in the relational database structure.

- Interaction: Adding a component

User will be able to add a station component. . She must provide input for all the
required fields present in the components table (Table 4), except latency which will
default to NULL value.

An existing station is needed as it will be the owner of the component and the
database design doesn’t allow orphan component entries. The interface will restrict the
addition of components to fit the above statement.

Validation will occur like described in “Adding a station” section.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 41

After successful validation, the web server will establish a connection to the database
and will insert the new component along its metadata into the Components table.

The web page will refresh showing the list with the newly included component.

- Interaction: Editing a component

User will be able to edit an existing component.
Editing will be restricted to non-constrained fields:

• Dip
• Azimuth
• Sample rate
• Sensitivity

After successful validation, the web server will establish a connection to the database
and will update the component along its metadata into the Components table.
The web page will refresh showing the list with the newly included component.

- Interaction: Deleting a component

User will be able to delete an existing station component. A confirmation message will
be displayed before permanent deletion is completed.

The web page will refresh showing the list with the newly included component.

2.6. Monitoring web tool

- .Authentication

The Monitoring tool will only execute read operations, so there’s no database integrity
risk. Therefore, an authentication system isn’t needed in this case.
No user interaction will be present in this tool, besides reviewing the displayed
information.

- Interface

Basically, the Monitoring tool is a table showing all the established feed links, ordered
alphabetically by Station code. It will connect periodically to the database to read the
latest available data for each feed from the Reliability table.

The following parameters will be shown:

• Station code (string)
• Network code (string)
• Component code (string)
• Location code (string)
• Available data starting time (real)
• Available data ending time (real)
• Channel merged average latency (real)

SISPYR / Interreg IVA

42 Near real time data exchange, 2013.04.24

• Merged Standard deviation for average latency (real)
• Channel most current average latency (real)
• Data availability (graphic bar)

Station
code

Network
code

Component
code

Location
code

Starting
time

Ending
time

Merged
Average
latency

Merged
Standard
deviation
latency

Current
average
latency

Data
availability

Table 6 - Available fields of web monitoring tool

Data availability will be a color-coded bar, showing in green the available data, in red
the absence of data (gaps).

The graphical bar will be attained by under-scaling component’s time range to fit an
integer range, from 0 to n, with a resultant time unit resolution of (Ending Time -
Starting Time) / n.

The loss of time native resolution implies that there’s a minimum gap length threshold
under which a gap won’t be noticeable. To address this issue a discontinuity display
line will be implemented, in the form of a yellow line over the bar that will break every
time a gap is encountered, no mattering its size.

- Implementation

In order to display the required information, the monitor tool will have to access to
Stations, Components and Reliability database tables, so it can build each feed
information line which will result in a list with components reliability data that can be
viewed as follows:

Sta Net Comp Loc Latency TimeStart TimeEnd LatAvg LatVar
CAVN CA HHZ -- 3,863962 1268735449 1268738866 4,02005 1,242655
 1268738869 1268741251 3,96197 1,137046
 HHN -- 3,213374 1268745927 1268747059 3,26969 1,004475
 1268747062 1268747669 3,04733 ,9880953
 1268747672 1268748329 3,55418 1,020006
 1268748332 1268749143 3,18140 1,003208
 HHE -- 2,845733 1268749201 1268749362 2,82012 1,066519
 1268749365 1268749583 2,88440 ,9927881
CFON CA HHZ -- 4,127426 1268746163 1268749580 4,23330 ,9294196
 1268746164 1268749581 3,95122 ,9654599
 HHE -- 8,347942 1268746163 1268749580 8,15502 2,706073

Table 7 - Components information fiels and example of data obtained by monitoring tool
from de database

• Starting and ending time for the component will be the minimum TimeStart

and maximum TimeEnd values from all the sequences for that component.

• To obtain the merged average latency and merged standard deviation
latency, the latency average and standard deviation of all the sequences
for that component must be accumulated using the following algorithm:

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 43

Knowing that…

 …Sequence A contains…
 Latency Average, from now on, La
 Latency Stddev from now on, Sa
 Time interval, from now on, Ta

…Sequence B contains…
 Latency Average, from now on, Lb
 Latency Stddev, from now on, Sb
 Time interval, from now on, Tb

…Merged Sequence C will contain…
 Merged latency Average, from now on, Lc
 Merged latency Stddev, from now on, Sc
 Merged Time interval, from now on, Tc

Merged Sequence C components will be computed as…

Tc = Ta + Tb
Lc = ((Ta * La) + (Tb * Lb)) / Tc
Sc = sqrt((Ta*(Sa2) + Tb*(Sb2) + Ta*(La2) + Tb*(Lb2) - Tc*(Lc2)) /
Tc)

2.7. The sample client

Sample client is a lineal process with an input and an output that can be detailed as
follows:

Connect to M2.2
Repository
Manager

Get channel list
with metadata

Filter channels by
distance from event

Request & retrieve
channel trace data in

event time interval
from Repository Manager

Request & retrieve
channel trace data in

corresponding station time
interval

from Repository Manager

Station-wise
time intervals

Disconnect from
M2.2 Repository

Manager

Yes

No

Dump trace
data to

MiniSeed files

Calculate event time interval
{TO event - T pre-event ...
TO event + T post-event}

Calculate
stations’

wave arrival
times

Calculate indvidual station
time intervals

{T station – T pre-event ...
T station + T post-event}

NRT Sample Client

Read configuration file and command line
parameters (event location and origin time)

Figure 15 - NRT Sample client program flow

SISPYR / Interreg IVA

44 Near real time data exchange, 2013.04.24

- Running the client

When client execution begins, the first task is to read the configuration file, found in
the binary directory, and to read the event location and origin time passed by
command line parameter.

From the configuration file the client will obtain:

• Distance (radius in km.) that will be used when calculating stations inside a
defined circular area.

• Pre-event and post-event time modifiers (in seconds) to be used in
calculation of channel’s data time intervals.

• Mini-seed naming convention and storage path.

• NRT server address and connection parameters.

• Log file path.

• Channel filtering using wildcards that will restrict channels used by this
client.

• Flag to enable/disable station-wise intervals.

From the command line parameters will obtain:

• Event latitude and longitude in degrees

• Event depth in meters

• Event origin time in year, month, day, hours, minutes and seconds.

- Connect to Repository Manager

Once the client has processed the configuration file and command line parameters will
use the connection parameters read from the configuration file to connect to the NRT
server using the Client API.

- Getting channel list

After connection has been established the client will ask for an updated list of
available channels. This list will include the metadata for those channels, which will be
used in the next step.

- Filtering the channel list

The client must determine which channels are near enough to the event geographical
coordinates.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 45

Flagging valid stations will be done using the stations location, event location and the
distance constant read from the configuration file. Any channel owned by a station
laying inside the circumference centred at the event location with radius equal to the
distance constant, will be included in the filtered channel list.

When the filtered list is ready, it will be matched against the filtering wildcards read
from the configuration file to provide the final channel list.

- Event-wise and station-wise intervals

Having the event time origin and the list of nearby stations, it’s time to request the
trace data from the channels. To request the data a time interval is necessary, and this
interval can be calculated using two different references, depending on the flag
specified in the configuration file.

- The path of the event-wise interval

The client will use the event origin time, and by adding and subtracting the post
and pre-event constants respectively, obtained from the configuration file, it will
obtain the event-wise interval.
Then it will use this interval as a common value for all channel trace data requests.

Figure 16 - Sample client: graphical example of event-wise interval calculation

- The path of the station-wise interval

Instead of using a common interval for all data requests, an individual interval will
be calculated for each channel.

With the station’s wave arrival times, the method is the same as in event-wise
interval. Instead of using event origin time as the reference for the interval
calculation, client will use the arrival times to calculate individual intervals.

SISPYR / Interreg IVA

46 Near real time data exchange, 2013.04.24

Pre-event time Post-event time

Pre-event time Post-event time

Pre-event time Post-event time

Pre-event time Post-event time

Figure 17 - Sample client: graphical example of station-wise interval calculation

- Getting the trace data

By using the Client API the client will call the requesting procedure to get the trace
data for each channel sequentially. Client API works over a blocking socket, so after a
channel data request, the client will have to wait till the data is retrieved or a timeout
expires.

- Exporting to MiniSeed

Using the path and naming convention found in the configuration file the client will
convert the trace data received from NRT server to MiniSeed format and dump it to
disk.

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 47

3. System test

Pools of test have been carried out in order to check the performance of the
system. A summary of these tests is described at this section.

3.1. Test scenarios

3.1.1. Basic scenario

- Requester scenarios

• Multi Feeding scenarios

o 2..N NAQS servers feeding n channels to n tanks
o 2..M Seedlink servers feeding n channels to n tanks
o 2...P Scream! servers feeding n channels to n tanks

• Complex Feeding scenarios

o Combination of NAQS, Seedlink and Scream! servers feeding Q tanks

All these scenarios include:

• Station and component information registered into Oracle DB through
Administration tool

• Reliability data stored on Oracle DB
• Checking feeds reliability using the Monitoring tool

- Provider scenarios

• Single simple client connection (Windows version only)
• Multiple simple clients connection (Windows version only)

 Simple client: Client with reduced functionality, having only Connect,

Channel List request, Channel Data request and Disconnect messages
implemented.

These scenarios include:

• Connection and handshaking. Disconnection.
• Channel list requesting
• Metadata requesting
• Data requesting

3.1.2. Full scenario

SISPYR / Interreg IVA

48 Near real time data exchange, 2013.04.24

Same conditions as in Basic scenario, but replacing simple client with the sample
client described in Design documents, both Linux and Windows versions. Also implies
testing of concurrent access to Oracle database and tanks.

3.2. Test cases

Common channel’s issues for all cases

• Different sample rates between several channels
• Different sample rates in the same channel
• Presence of gaps
• Channels with different data types
• Data retransmission

3.2.1. Case 1: Standard error-free environment

It will be defined as an environment without on purpose generated errors.

3.2.2. Case 2: Connectivity issues

‐ Case 2.1: Broken feed link

- Case 2.1.1: Station to datacenter (no data)

- Case 2.1.2: Datacenter to NRT server (no connection)

‐ Case 2.2: Broken Oracle Database link

‐ Case 2.3: Broken Apache Web server link

‐ Case 2.4: Client wrong implementation (Data protocol testing)

3.2.3. Case 3: Storage issues

‐ Case 3.1: Database corruption

- Lost/unreal/extreme values for reliability data

- Lost/unreal/extreme values for component data

- Lost/unreal/extreme values for station data

‐ Case 3.2: Tank corruption

- Case 3.2.1: Tank file corruption / erase

- Case 3.2.2: Index file corruption / erase

SISPYR / Interreg IVA

Near real time data exchange, 2013.04.24 49

- Case 3.2.3: Structure file corruption / erase

‐ Case 3.3: Testing of crash recovery mechanisms

3.2.4. Case 4: Stressing

‐ Case 4.1: Connection-wise

- Case 4.1.1: Simultaneous Feed links

• Case 4.1.1.1: From same datacenter source

• Case 4.1.1.2: From different datacenters

- Case 4.1.2: Client connectivity concurrency

- Case 4.1.3: Hammering

• Case 4.1.3.1: Database & Web server, through Monitor tool

• Case 4.1.3.2: Tanks, through client applications

‐ Case 4.2: Storage-wise

- Case 4.2.1: Number of tanks

- Case 4.2.2: Tank’s parameters

‐ Case 4.3: Server

Study of resource consumption

SISPYR / Interreg IVA

50 Near real time data exchange, 2013.04.24

4. Operation

Nowadays 51 stations (153 streams) are being received at NRT Server installed
and in operation at IGC facilities in Barcelona. All these data are available for
partners and for the shake maps generation.

NRT IGN BRGM OMP IGC TOTAL
ACC 2 9 6 6 23
BB 7 0 7 13+1 (IAE) 28

TOTAL 9 9 13 20 51
Table 8 - Distribution of BB and accelerometric stations received at NRT Server, from each

partner.

Figure 18 - Map of all stations received at the NRT Server, identified by their owner. The red

polygon represents the SISPyr region.

